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Summary

Bubble columns are used in a variety of industrial processes and are commonly used as
gas-liquid reactors. Therefore the design and scale-up of this type of process equipment is
of great economic interest. Detailed hydrodynamic models can give insight in the
hydrodynamics of bubbly flows occurring in these reactors. Despite the widespread
application of bubbly flows and substantial research efforts on their behaviour, detailed
knowledge on fluid dynamics is still lacking. The models incorporated for the forces
acting on bubbles are usually based on spherical bubbles, while the shape of most
bubbles in a column is non-spherical. Due to the increased computer capacity the
fundamental modelling of multi-fluid problems have come within reach. In this study
effort has been made to develop detailed computer models that can provide detailed
information about the hydrodynamics of bubble columns.

In this thesis a ‘hierarchy of models’ is employed, which consists of a set of three types
of CFD models. Each model is used to study specific hydrodynamic phenomena. The
models have been validated with experimental data. The results of each model will be
shortly presented.

Interface tracking models

Interface tracking models are the most detailed models in the hierarchy of models. To
study in detail the time-dependent behaviour of large bubbles in an initially quiescent
liquid, 2D volume of fluid (VOF) and 2D and 3D front tracking models have been used.
A known drawback of the VOF model is the evaluation of the surface tension force by
the continuum surface force model, especially at points where the interface has a strong
curvature compared to the computational mesh size. In this thesis a new surface tension
model, the tensile force model, has been introduced into the VOF model. With this model
is it possible to perform simulations for very small bubbles in an air-water system.
The mentioned interface tracking models were used to determine the forces acting on a
bubble, i.e. the drag, lift and virtual mass forces by evaluating the force balance for a
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single bubble. The results were compared to relations from literature. The drag
coefficients for small bubble diameters (< 2 mm), calculated with the 2D VOF model, are
very close to the relations of Tomiyama (1998) and Ishii and Zuber (1979). For larger
bubble diameters (> 2 mm) the drag coefficients are very close to the relation of Grace et
al. (1976). The drag coefficients in the 3D front tracking model for bubbles larger than
7 mm are higher than in the 2D VOF model where the equation for a sphere is used to
calculate the drag coefficient. When the equation for a cylinder is used to calculated the
drag coefficient for the 2D VOF model, the drag coefficients of the 3D front tracking
model and the 2D VOF model are close together.

The virtual mass force was calculated during the acceleration of the bubble. For the
2D VOF model the virtual mass coefficient is about 1.1. For the 3D case the value of the
virtual mass force is 0.6. These values for bubbles in 2D and 3D systems are in
agreement with literature.

The lift force was studied using a 2D front tracking model. A bubble in a linear shear
field does not rise in a straight line, but oscillates in the horizontal direction and moves to
one side of the column. An 8 mm bubble moves to the side with the highest slip velocity
and a 10 mm bubbles moves to the side with the lowest slip velocity. When using a lower
shear rate, the movement of the bubble is smaller. The horizontal velocity and thus the
sign of the lift coefficient shows large oscillations due to the oscillating movement of the
bubble in the column. The average lift coefficient for a bubble of 8 mm is positive and
the average lift coefficient for a bubble of 10 mm is negative. The values are larger than
the values reported in literature (Tomiyama, 1998).

Euler-Lagrange model

The next level in the hierarchy of models is the Euler-Lagrange model, also called
discrete bubble model (DBM). The DBM was used to investigate the hydrodynamics,
coalescence and break-up occurring in bubble columns. The 3D DBM code, originally
developed by Delnoij (1999), was extended to incorporate models describing the
coalescence and break-up along with a closure model for the turbulence. The model
incorporates all relevant forces acting on a bubble in a liquid. The DBM is used to
calculate the liquid flow in a square column. The simulation results of the DBM with
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closures for the sub-grid stresses were compared to experimental particle image
velocimetry (PIV) results.
The calculated liquid velocity and velocity fluctuations of the DBM are overpredicted
compared to the PIV results. The difference between the simulation results and the
experiments is about 7 %. The differences between the simulations and the PIV results
are marginal when using a smaller time step. The influence of a smaller grid size is small.
In the DBM in which the sub-grid scale stresses are not accounted for the liquid velocity
and velocity fluctuations are much lower. In this case the effective viscosity is lower due
to the absence of the turbulent viscosity. Due to the low viscosity the bubble plume is
more spread over the column cross-sectional area and the average velocity profile is
flatter. When the turbulence induced by the bubbles is accounted for in the effective
viscosity, the bubble plume is less dynamic and the velocity profile is steeper. The
incorporation of the sub-grid scale velocity in the evaluation of the force balance has a
negligible influence on the results of the model.
When the lift coefficient is changed from 0.3 to 0.5 the results are similar to the results
obtained for the case with the bubble induced turbulence.
The best results are obtained when using a time step of 0.5.10-3 s, a grid size of 0.01 m in
all directions and a lift coefficient of 0.5.

To investigate the influence of the coalescence and break-up of bubbles, the DBM was
extended with the coalescence model of Chesters (1991) and Lee et al. (1987) and the
break-up model of Luo and Svendsen (1996). The break-up model of Luo and
Svendsen (1996) was developed for energy dissipations larger than 0.5 m2 s-3. However,
in bubble columns with low gas flow rates and low turbulence intensities the energy
dissipation is in the order of 10-2 m3 s-1. When these energy dissipations are used in the
break-up model, hardly any break-up occurs. In the simulations break-up only occurs in
the top of the column, when the energy dissipation exceeding than 10-1 m3 s-1 and the
diameter of the bubble is large (> 5 mm).
The number of collisions between two bubbles that result in coalescence is 43 % with the
coalescence model of Chesters and 85 % with the coalescence model of Lee et al. (1987).
Most of the coalescence occurs in the lower part of the column. The higher the superficial
gas velocity, the more collisions occur and thus the more coalescence takes place.
Due to the fact that hardly any break-up of bubbles occurs, both coalescence models
overpredict the mean diameter of the bubbles. The results of the coalescence model of
Chesters (1991) combined with the break-up model of Luo and Svendsen (1996) shows
the best agreement with experimental results.
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Euler-Euler model

In Euler-Euler models the different phases are treated as interpenetrating fluids and the
ensemble averaged mass and momentum conservation equations are solved to describe
the time-dependent motions of the phases. For the simulations using the Euler-Euler
model the commercial code CFX 4.4 was used. Three different Euler-Euler models have
been used to describe two-phase flows in bubble columns: A gas-liquid model, a gas-
liquid model with the MUSIG model for the gas phase and a gas-gas-liquid model. In all
three Euler-Euler models a sub-grid scale model for the sub-grid turbulence is
incorporated. The gas phase in the MUSIG model is divided in a number of classes
depending on the bubble size. For each class a population balance is used to account for
the consequences of break-up and coalescence of bubbles. To study the effect of the
different rise velocities of the bubbles a three-phase gas-gas-liquid system is used. The
bubbles in the two gas phases have different diameters and different drag relations.
Good agreement was reached comparing the simulation results of the gas-liquid model to
the experimental PIV measurements. When using a smaller grid size the liquid velocity
and velocity fluctuations are lower, but the differences between the velocity profiles of
the case with smaller grid sizes and the standard case are marginal. In the case with a
smaller time step the average velocity profile is lower than in the standard case. The
velocity fluctuations in the vertical direction are lower, but the difference between the
fluctuations in the horizontal direction between the case with smaller time step and the
standard case is negligible. When the SGS model is not implemented the liquid velocity
and velocity fluctuations are much lower, which is in agreement with the results of DBM.
The default break-up model used in the MUSIG model was that of Luo and
Svendsen (1996), the default coalescence model was that of Prince and Blanch (1990).
The difference of the velocity and velocity fluctuations between the gas-liquid models
with and without MUSIG model is very small. This is as expected, because the MUSIG
model combined with the used drag relation does not influence the interface momentum
transport. The calculated velocities of the gas-gas-liquid model are lower than for the gas-
liquid model. This is due to the presence of the smaller bubbles with a different drag
relation. There is very little movement of the bubble plume, as can be concluded from the
velocity fluctuations. This is not in agreement with the experimental data.
Simulation results of two different coalescence models, of Prince and Blanch (1990) and
Chesters (1991), are compared with simulation results of the DBM with the coalescence
model of Chesters (1991) in a square column. In all models the break-up model of Luo
and Svendsen (1996) is incorporated. The bubbles in the DBM are the smallest and the
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bubble size distribution is the narrowest. The bubbles in the model of Prince and
Blanch (1990) are the largest and the bubble size distribution is the widest. As mentioned
previously the results of the DBM with the coalescence model of Chesters (1991) and the
break-up model of Luo and Svendsen (1996) shows the best agreement with experimental
results. The results of the Euler-Euler model with the models of Chesters (1991) and Luo
and Svendsen (1996) show the best agreement with the results of the DBM. The bubbles
in the Euler-Euler model with the models of Prince and Blanch (1990) and Luo and
Svendsen (1996) are too large.

Experiments

A video-imaging technique is used to measure the bubble size distribution and mean
diameter in a pseudo 2D lab-scale bubble column. The results of these experiments are
used to validate the simulation results of the DBM. In this thesis it is shown that the
imaging technique gives valuable information about the bubble size distribution and
mean diameter at different flow rates and at different heights in the column. In a column
filled with distilled water the bubble size distribution moves to larger diameters, with
increasing height because of coalescence of the bubbles. The same trend is observed for
increasing flow rates.
When a very small amount of octanol (2.4.10-4 M) is added to the water, coalescence is
inhibited. In this case the mean diameter only shows a weak increase with increasing
height in the column due to the decrease in hydrostatic pressure. The mean diameter
decreases with increasing flow rate. When the flow rate is higher, more bubbles are
present in the column and more turbulence and eddies are generated. The number of
collisions between bubbles and eddies is larger. Therefore the chance for breakage of the
bubbles is higher and the mean diameter of the bubbles decreases. The bubble size
distribution moves to larger diameters with increasing height and moves to smaller
diameters with increasing flow rate.
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Samenvatting

Bellenkolommen worden in veel industriële processen toegepast en gebruikt als gas-
vloeistof reactoren. Daarom is het ontwerp en de scale-up van dit type procesapparatuur
van groot economisch belang. Gedetailleerde hydrodynamische modellen kunnen inzicht
geven in het hydrodynamische stromingsgedrag van bellen in deze reactoren. Ondanks de
veelvuldige toepassing van stromingen met bellen en de aanzienlijke hoeveelheid
onderzoek naar het gedrag hiervan, ontbreekt er gedetailleerde kennis over de
stromingsdynamica. De modellen voor de beschrijving van de krachten die op bellen
werken, zijn gebaseerd op ronde bellen, hoewel de vorm van de meeste bellen in een
kolom niet rond is. Door de toenemende computer capaciteit komt de fundamentele
modellering van meer-fase systemen binnen bereik. In deze studie is inspanning verricht
om gedetailleerde modellen te ontwikkelen, die gedetailleerde informatie over de
hydrodynamica van bellenkolommen kunnen geven.

In dit proefschrift wordt het concept van de ‘hiërarchie van modellen’ toegepast, die
bestaat uit een set van drie CFD modellen. Elk model wordt gebruikt om specifieke
hydrodynamische verschijnselen te bestuderen. De modellen zijn gevalideerd met
experimentele data. De resultaten van elke van deze modellen worden hieronder kort
beschreven.

Interface tracking modellen

De ‘interface tracking’ modellen zijn de meest gedetailleerde modellen in de hiërarchie
van modellen. Voor het in detail bestuderen van het tijdsafhankelijke gedrag van grote
bellen in een initieel stilstaande vloeistof  zijn een 2D ‘volume of fluid’ (VOF) model en
2D en 3D ‘front tracking’ modellen gebruikt. Een bekend nadeel van het VOF is de
evaluatie van de oppervlaktespanning middels het ‘continuum surface force’ model, met
name bij punten waar het interface een sterke kromming heeft in vergelijking tot de
grootte van het grid. In dit proefschrift is een nieuw oppervlaktespanningsmodel in het
VOF model geïntroduceerd, het ‘tensile force model’ Met behulp van dit model is het
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mogelijk om simulaties voor zeer kleine bellen in een water-lucht systeem uit te voeren.
De genoemde interface tracking modellen zijn gebruikt om de krachten op bellen, d.w.z.
de wrijvingskracht, de liftkracht en de kracht ten gevolge van de toevoegde massa van de
vloeistof, te bepalen door het evalueren van de krachtenbalans voor een enkele bel. De
resultaten zijn vergeleken met relaties uit de literatuur. De waarden van de coëfficiënten
van de  wrijvingskracht voor kleine bellen (< 2 mm), berekend met het 2D VOF model,
komen nauw overeen met de relaties van Tomiyama (1998) en Ishii en Zuber (1979).
Voor grotere bellen (> 2 mm) komen de waarden van deze coëfficiënten goed overeen
met de relatie van Grace et al. (1976). De waarden van weerstandscoëfficiënten in het
3D front tracking model voor bellen groter dan 7 mm zijn hoger dan die van het 2D VOF
model, waarbij de vergelijking voor een cirkel werd gebruikt om de
weerstandscoëfficiënten te berekenen. Als de vergelijking voor een cylinder wordt
gebruikt om de weerstandscoëfficiënten voor het 2D VOF model uit te rekenen, komen
de waarden van de weerstandscoëfficiënten voor het 3D front tracking model en het
2D VOF model goed overeen.

De kracht ten gevolge van de toegevoegde massa van de vloeistof werd berekend tijdens
de versnelling van de bel. Voor het 2D VOF model is de waarde van de coëfficiënt van
deze ongeveer 1.1. Voor 3D front tracking model is de waarde van de coëfficiënt gelijk
aan 0.6. Deze waarden komen overeen met waarden uit de literatuur voor 2D en
3D modellen.
De liftkracht werd bestudeerd met behulp van een 2D front tracking model. Een bel in
een lineair afschuifveld stijgt niet in een rechte lijn, maar oscilleert in horizontale richting
en verplaatst zich naar een kant van de kolom. Een 8 mm bel verplaatst zich naar de kant
met de grootste slipsnelheid en een 10 mm bel naar de kant met de kleinste slipsnelheid.
Bij een kleinere afschuifsnelheid is de verplaatsing van de bel kleiner. De horizontale
snelheid en dus ook het teken van de lift coëfficiënt vertonen grote oscillaties ten gevolge
van de oscillaties van de bel in de kolom. De gemiddelde lift coëfficiënt van een bel van
8 mm is positief en de gemiddelde lift coëfficiënt van een bel van 10 mm is negatief. De
waarden van deze lift coëfficiënten zijn groter dan de literatuurwaarden
(Tomiyama, 1998).
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Euler-Lagrange model

Het volgende niveau in de hiërarchie van de modellen is het Euler-Lagrange model, ook
wel het discrete bellen model (DBM) genoemd. Het DBM werd gebruikt om de
hydrodynamica, coalescentie en het breken van bellen in een bellenkolom te bestuderen.
De 3D DBM code, origineel ontwikkeld door Delnoij (1999), werd uitgebreid met
modellen die de coalescentie en het breken van bellen beschrijven en er werden
sluitingswetten voor de turbulentie in het model geïmplementeerd. Het model bevat
vergelijkingen van alle relevante krachten die op bellen in een vloeistof werken. Het
DBM is gebruikt om de stroming in een vierkante kolom te berekenen. De resultaten van
de simulaties met het DBM, voorzien van een sluitingsmodel voor de sub-grid
spanningen, zijn vergeleken met experimentele ‘particle image velocimetry’ (PIV)
resultaten.
De door het DBM gesimuleerde snelheid en de snelheidsfluctuaties zijn hoger dan de PIV
resultaten. Het verschil tussen de resultaten van de simulaties en de experimenten is
ongeveer 7 %. De verschillen tussen de simulaties en de PIV resultaten zijn marginaal als
er een kleinere tijdstap wordt gebruikt. De invloed van een kleiner grid op de resultaten is
zeer klein.
In DBM simulaties waarin de sub-grid schaal spanningen niet worden verdisconteerd
zijn de snelheid en de snelheidsfluctuaties lager. In dat geval is de effectieve viscositeit in
het model lager ten gevolge van de afwezigheid van turbulente viscositeit. Lage
viscositeiten geven een grotere verspreiding van de bellenpluim over het oppervlak van
de kolom en een meer vlakker gemiddelde snelheidsprofiel. Wanneer de door de bellen
geïnduceerde turbulentie middels de effectieve viscositeit wordt meegenomen, leidt dit
juist tot een minder dynamische bellenpluim en dientengevolge een spitser
snelheidsprofiel. Het verdisconteren van een sub-grid schaal snelheid in de evaluatie van
de krachtenbalans blijkt een verwaarloosbare invloed te hebben op de uitkomsten van het
model.
Wanneer de coëfficiënt van de liftkracht wordt veranderd van 0,3 naar 0,5 geeft dit
gelijke resultaten als bij het gebruik van de door de bellen geïnduceerde turbulentie.
De simulaties geven de beste overeenkomsten met de experimentele data wanneer een
tijdstap van 0,5.10-3 s, een gridgrootte van 0,01 m in alle richtingen en een liftcoëfficiënt
van 0,5 worden gebruikt.

Om de invloed van coalescentie en opbreken van bellen te onderzoeken werd het DBM
uitgebreid met de coalescentiemodellen van Chesters (1991) en Lee et al. (1987) en het
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breekmodel van Luo and Svendsen (1996). Het breekmodel van Luo and
Svendsen (1996) werd ontwikkeld voor een energiedissipatie groter dan 0,5 m2 s-3. In
bellenkolommen met een lage gas flow snelheden en lage turbulentie is de
energiedissipatie echter in de orde van grootte van 10-2 m3 s-1. Als deze energiedissipaties
worden gebruikt in de breekmodellen vindt het breken van bellen nauwelijks plaats. In de
simulaties breken de bellen alleen in de top van de kolom als de energiedissipatie groter
is dan 10-1 m3 s-1 en de diameter van de bel groot is (> 5 mm).
Het aantal botsingen tussen twee bellen dat leidt tot coalescentie is 43 % in het
coalescentiemodel van Chesters (1991) en 85 % in het coalescentiemodel van Lee
et al. (1987). De meeste coalescentie vindt plaats in het onderste gedeelte van de kolom.
Hoe hoger de superficiële gassnelheid, des te meer botsingen en coalescentie er
plaatsvinden.
Doordat het breken van bellen nauwelijks plaatsvindt, leiden deze twee
coalescentiemodellen tot een overschatting van de gemiddelde beldiameter. Ondanks
deze tekortkoming komen de resultaten van het coalescentiemodel van Chesters (1991)
gecombineerd met het breekmodel van Luo en Svendsen (1996) het beste overeen met de
experimentele resultaten.

Euler-Euler model

In Euler-Euler modellen worden de fasen behandeld als interpenetrerende fasen. De
tijdsafhankelijke bewegingen van de verschillende fasen worden beschreven door het
oplossen van de ensemble gemiddelde massa- en impulsvergelijking. Voor de simulaties
met het Euler-Euler model is de commerciële code CFX 4.4 gebruikt. Er werden drie
verschillende Euler-Euler modellen gebruikt om de twee-fasestroming in een
bellenkolom te beschrijven: Een gas-vloeistof model, een gas-vloeistofmodel met het
MUSIG model voor de gasfase en een gas-gas-vloeistofmodel. In alle drie modellen is
een sub-gridschaal model voor de sub-grid turbulentie geïmplementeerd. In het MUSIG
model wordt de gasfase op basis van belgrootte in een aantal klassen opgedeeld. Voor elk
van de klassen wordt een populatiebalans bijgehouden welke de gevolgen van het breken
en coalesceren van bellen verdisconteerd. Om het effect van verschillende stijgsnelheden
van de bellen te bestuderen wordt het driefasemodel gas-gas-vloeistof gebruikt. De bellen
in de twee gasfasen hebben verschillende diameters en verschillende relaties voor de
wrijvingskracht.
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De overeenkomst tussen de simulatieresultaten van het gas-vloeistofmodel en PIV
metingen is goed. Wanneer een kleiner grid wordt gebruikt zijn de snelheid en de
snelheidsfluctuaties kleiner, maar het verschil tussen het model met een fijner grid en het
standaard model is klein. Bij het gebruik van een kleinere tijdstap is de gemiddelde
snelheid  lager dan in de standaard case. De snelheidsfluctuaties in de verticale richting
zijn lager, maar de verschillen tussen de fluctuaties in de horizontale richting voor de
standaard case en de case met de kleinere tijdstap zijn verwaarloosbaar. Wanneer het
SGS model buiten beschouwing wordt gelaten, zijn de snelheidsprofielen voor de
gemiddelde snelheid en de snelheidsfluctuaties beduidend lager, hetgeen in
overeenstemming is met de DBM resultaten.
Het standaard breekmodel dat in het MUSIG model wordt gebruikt is het model van Luo
and Svendsen (1996), het standaard coalescentiemodel is het model van Prince and
Blanch (1990). Het verschil van de snelheid en de snelheidsfluctuaties tussen het gas-
vloeistofmodel met en zonder MUSIG is heel klein. Dit is naar verwachting, aangezien
het MUSIG  model in combinatie met het gebruikte wrijvingskrachtmodel geen gevolgen
heeft voor de implusvergelijkingen.
De berekende snelheid van het gas-gas-vloeistofmodel is lager dan voor het gas-
vloeistofmodel. Dit is het gevolg van de aanwezigheid van de kleinere bellen met een
andere relatie voor de weerstandskracht. Uit de snelheidsfluctuaties kan worden
geconcludeerd, dat de bewegingen van de bellenpluim in dit geval klein is, hetgeen niet
in overeenstemming is met de experimentele data.
De simulatieresultaten van twee verschillende coalescentiemodellen, van Prince en
Blanch (1990) en Chesters (1991), worden vergeleken met simulatieresultaten van het
DBM met het coalescentiemodel van Chesters (1991) in een vierkante kolom. In alle
modellen is het breekmodel van Luo en Svendsen (1996) geïmplementeerd. De bellen in
het DBM zijn het kleinst en de belgrootteverdeling is het smalst. De bellen in het model
van Prince en Blanch (1990) zijn het grootst en de belgrootteverdeling is het breedst.
Zoals eerder gezegd komen de resultaten van het DBM met het coalescentiemodel van
Chesters (1991) en het breekmodel van Luo en Svendsen (1996) het best overeen met de
experimentele resultaten. De resultaten van het Euler-Euler model met de modellen van
Chesters (1991) en Luo en Svendsen (1996) komen het best overeen met de resultaten
van DBM. De bellen in het Euler-Euler model met de modellen van Prince en
Blanch (1990) en Luo en Svendsen (1996) zijn te groot.
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Experimenten

Om de belgrootteverdeling en de gemiddelde beldiameter in een pseudo 2D bellenkolom
te bepalen werd een video-techniek gebruikt. De resultaten van deze experimenten
werden gebruikt voor de validatie van het DBM. In dit proefschrift is aangetoond, dat de
video-techniek waardevolle informatie geeft over de belgrootteverdeling en de
gemiddelde diameter bij verschillende gasstromen en op verschillende hoogtes in de
kolom. In gedestilleerd water verplaatst de belgrootteverdeling zich naar grotere
diameters bij toenemende hoogte ten gevolge van coalescentie. Hetzelfde effect werd
gezien bij toenemende gasstroom.
Als een zeer kleine hoeveelheid octanol (2.4.10-4 M) aan het water wordt toegevoegd,
wordt coalescentie afremd. In dit geval neemt de gemiddelde diameter een klein beetje
toe met toenemende hoogte in de kolom ten gevolge van de afnemende hydrostatische
druk met toenemende hoogte. De gemiddelde diameter neemt af met toenemende
gasstroom. Als de gasstroom groter is, zijn er meer bellen aanwezig in de kolom. Het
aantal botsingen tussen bellen en wervels is groter. De breekkans voor de bellen is
daardoor ook groter en de gemiddelde beldiameter wordt kleiner. De belgrootteverdeling
verschuift naar grotere beldiameters bij toenemende hoogte in de kolom en verschuift dus
naar kleinere beldiameters bij toenemende gasstroom.
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Chapter 1

GENERAL INTRODUCTION

Abstract

In this chapter a brief introduction to bubbles columns is presented. The hydrodynamics
of gas-liquid bubble columns is very complex and despite the widespread application of
bubble columns, detailed knowledge on the fluid dynamics is still lacking. Therefore
fundamental hydrodynamic models are required to study the fluid dynamics. A ‘hierarchy
of models’ is used which consists of a set of three CFD models. In this thesis each model
is used to study specific hydrodynamic phenomena. The flow regimes and the different
shapes of the bubbles in a bubble column are described, together with the experimental
techniques used in this thesis. In addition the research objectives are presented and the
chapter is concluded with an outline of the thesis.



Chapter 1

14

1.1 Bubble Columns

Bubble columns are used in a variety of industrial processes including large-scale
production of base chemicals and synthetic fuels. Many processes involve gas-liquid
mass transfer with accompanying reactions between the gas and the liquid phase itself or
with components dissolved or suspended in it. Bubble columns in industry are operated
for a wide range of fluid properties.
Gas-liquid bubble columns offer distinct advantages over other gas-liquid contactors.
Two characteristic aspects of bubble columns are their simple construction and the
absence of complex (moving) mechanical parts. Therefore the column is easy to construct
and maintain. The bubble column is a relatively cheap reactor and can be built in large
sizes. The aspect ratio L/d, i.e. the ratio between length and diameter, may vary
enormously. Aspect ratios between 3 and 6 are common and a L/d ≈ 10 is not infrequent.
The columns have good heat transfer characteristics, with nearly uniform temperature,
even under strong exothermal reaction conditions. Bubble columns work equally well
when the gas throughput is high. The high rate of liquid circulation (due to rising gas
bubble entrainment) ensures that when any solids such as catalysts are involved they can
be uniformly distributed. As the liquid phase has a significantly higher density than the
gas phase, the liquid flow rate passing through a bubble column is low and the gas flow
rate is the most important parameter. Gas throughput may vary widely according to the
methods used and the specified conversion level. The superficial gas is normally in the
region of 0.03-0.12 m s-1, although in practice, very high rates in excess of 1 m s-1 are
also used. The dispersed gas passing upwards through the reactor entrains liquid with it,
which then moves downwards again, forming distinctive flow patterns. The bubbles and
entrained liquid tend to rise through the centre, the larger bubbles in particular. Therefore
a radial gas hold-up and velocity profile results, despite an initial uniform distribution of
gas across the whole cross-section of the reactor. Liquid close to the wall moves
downwards, transporting smaller bubbles with it for a certain distance. A radial cross-
exchange of fluid elements is superimposed on the axial circulation pattern. This gives a
high radial mixing, so practically no liquid phase concentration gradients can be found in
the radial direction (Deckwer et al, 1992).

Despite the widespread application of bubble columns and substantial research efforts on
their behaviour, detailed knowledge on the fluid dynamics is still lacking. Flow
phenomena that are difficult to describe are bubble coalescence, bubble break-up and the
resulting bubble size distribution in a bubble column as a function of the operating
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conditions. From experimental results it can be concluded that these phenomena have a
distinct impact on the performance of a gas-liquid bubble column as a chemical reactor,
through for instance the interfacial area. To illustrate the difficulties that arise in the
prediction of those flows, two very similar gas-liquid systems are shown in
Figure 1.1. The only difference is that in one system only distilled water is used and in
the other system distilled water with a very small amount of n-octanol. In Figure 1.1 it
can be seen that bubbles in distilled water are larger than bubbles in distilled water with
octanol. Octanol inhibits coalescence and the smaller bubbles influence the rate of mass
transfer.

Figure 1.1: Experimental images of bubbles in a bubble column; left: distilled water, right: distilled water
and octanol. Superficial gas velocity = 2.78 m s-1.

An advantage of computer models over experiments is the ease at which the different
parameters can be varied and the effects can be studied. Experimental programs are very
time consuming and the usage of validated computer models can significantly reduce the
costs of experimental work. The ongoing developments in computer hardware give the
opportunity to develop advanced mathematical models to study the hydrodynamic
behaviour of gas-liquid flows in bubble columns. Once these models have been
thoroughly validated with experiments, they can be used to study the flow phenomena in
bubble columns.
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1.2 Hierarchy of models

The gas-liquid flow prevailing in a bubble column is very complex. Because of large
differences in time and length scales involved, it seems almost impossible to develop a
generalised computational fluid dynamics (CFD) model that accounts for all
hydrodynamic phenomena in bubble columns. Therefore a ‘hierarchy of models’ is
employed in which each model is used to study specific hydrodynamic phenomena
(Delnoij, 1999), prevailing at a particular scale. The ‘hierarchy of models’ used in this
thesis comprises of three CFD models (Figure 1.2): Interface tracking models, the Euler-
Lagrange and the Euler-Euler models. The spatial resolution decreases from O(10-4 m)
for the interface tracking models to O(10-2) for the Euler-Euler models.

In the hierarchy of models information is exchanged between the three levels. The
interface tracking models can describe the bubbles in much more detail than the Euler-
Lagrange and the Euler-Euler models and require no assumptions and thus no closure
relations. The Euler-Lagrange and Euler-Euler models contain unclosed parts, which can
be closed by constitutive equations, derived from the results of the interface tracking
models. Each of these models will now be briefly introduced.

Figure 1.2: Multi-level modelling concept for fundamental hydrodynamic models of gas-liquid bubble
columns.
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The interface tracking models solve the instantaneous Navier-Stokes equations to obtain
the gas and liquid flow field with a very high spatial resolution. The model tracks the
motion and deformation of the gas-liquid interface by using an interface tracking scheme.
This scheme has to be very accurate to avoid numerical diffusion of the gas-liquid
interface and to account for the substantial changes in the interface topology. The
interface tracking models do not require any empirical constitutive equations. The
number of bubbles that can be simulated simultaneously is limited (<10 bubbles).
Different methods can be used for this interface tracking technique. Delnoij (1999) used a
volume of fluid (VOF) technique (Youngs, 1982; Rudman, 1997) that tracks the volume
of the bubble. Tryggvason et al. (2001) used a front tracking technique, which tracks the
gas-liquid interface. Sankaranarayanan et al. (1999, 2002) implemented a volume
tracking technique in the Lattice Boltzmann method.

The Euler-Lagrange model (Sokolichin et al., 1997; Delnoij, 1999; Lapin and Lübbert,
1994; Laín et al., 2001), also called discrete bubble model (DBM), tracks the individual
bubbles by solving the equation of motion for each bubble. The bubble dynamics are
described by incorporating the relevant forces acting on a bubble rising in a liquid. To
solve the liquid flow field the volume-averaged Navier-Stokes equations are used. The
model has a two-way coupling for the exchange of momentum between the gas and liquid
phase which may be obtained with the use of interface tracking models. Each individual
bubble is tracked in the computational domain accounting for encounters with other
bubbles and walls. Therefore it can be used to implement a break-up and coalescence
model. The model calculates the break-up or coalescence efficiency and determines
whether the bubbles will break, coalesce or bounce.
The Euler-Euler model (Sokolichin et al., 1997; Sokolichin and Eigenberger, 1994), also
called two-fluid Model, solves the volume averaged mass and momentum conservation
equations to describe the time-dependent motions of both the liquid and gas phase. In this
model the exchange of momentum through the interface also needs to be modelled. This
exchange can consist of several forces, like drag, lift and virtual mass. The equations for
the closure of this part of the model are derived using the interface tracking model. For a
proper implementation of the break-up and coalescence model the same equations as
studied in the Euler-Lagrange model are employed.
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1.3 Flow regimes

In literature three different flow regimes encountered in bubble column operations are
reported (Figure 1.3). These flow regimes affect the hydrodynamics, transport and mixing
properties in the column. When the gas flow rate is low the bubble size distribution is
relatively narrow and small, spherical gas bubbles are uniformly distributed in the
column. This is known as the homogeneous flow regime. The rise velocity of the bubbles
in this regime is about 0.18-0.30 m s-1 (Levich, 1962). Liquid up-flow is observed in the
wake of the bubbles and liquid down flow in between the bubbles and near the walls.
However, this state is not maintained when the superficial gas velocity is higher. In this
flow regime, bubbles coalesce and break-up and bubbles of different sizes and shapes can
be observed. The larger bubbles rise in the centre of the column and the smaller bubbles
are moving along the wall of the column and in the wakes of the larger bubbles. This type
of flow regime is known as the heterogeneous regime and commonly used in the
industry. The liquid flow field is unsteady and dominated by a variety of vortices and
turbulent structures.

                                homogeneous                heterogeneous                   slug flow
                                           regime                           regime                            regime

Figure 1.3: Flow regimes observed in gas-liquid bubble columns.

At still high superficial gas velocity and in bubble columns with a diameter smaller than
0.15 m the slug flow regime can be observed. In this regime very large bubbles, the so-
called slugs, span the entire cross section of the bubble column. In the operation of
bubble columns this slug flow regime is undesirable due to its excessive gas by-pass
effect.
In this thesis only the homogeneous and the heterogeneous regime will be considered.
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1.4 Experiments

It is very important to validate the results of the aforementioned models. To validate
these models experimental data are compared to simulation results.
For the validation of the break-up and coalescence models in both the Euler-Lagrange
and Euler-Euler models, information about the bubble size distribution is typically of
interest. The bubble size distribution in a bubble column can be measured by imaging
techniques and a number of probe techniques. In this thesis an imaging technique is used
in a pseudo 2D column to measure the bubble size distribution and the number, volume
and Sauter mean diameter. The advantage of the imaging technique is the non-
intrusiveness. A disadvantage of this technique is that it can only be applied in pseudo 2D
systems at relatively low gas hold-up. Despite this disadvantage the imaging technique is
applied in many studies.
It is also important to validate the hydrodynamics predicted by the Euler-Lagrange and
Euler-Euler models. The flow in a bubble column can be measured using particle image
velocimetry (PIV). PIV is a powerful non-intrusive imaging technique developed in the
field of experimental fluid dynamics to study fluid motion using tracer particles. It can be
used to measure whole field information of the mean and fluctuating velocities.

1.5 Objective

Detailed knowledge on the fluid dynamics in bubble columns is still lacking. The
objective of this work is to develop and improve computational models that describe the
time-dependent flow behaviour of gas-liquid flows in bubble columns. The models will
be validated with experimental data.
The hierarchy of models concept is used in this work. The detailed models, i.e. interface
tracking models and the Euler-Lagrange model, will be used to develop closure laws for
the Euler-Euler model.

1.6 Outline

Chapter 2 describes the most detailed level in the ‘hierarchy of models’. In this chapter
two interface tracking models, i.e. the volume of fluid model and the front tracking model
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are presented. First the fundamentals of the models will be given as well as a description
of the numerical techniques. Furthermore the forces acting on a bubble are described. The
simulation results of the drag, lift and virtual mass force acting on a bubble are given and
discussed.
Chapter 3 deals with the extension of the discrete bubble model, originally developed by
Delnoij (1999). The DBM is extended with a LES turbulence model and with models
describing the coalescence and break-up of bubbles. The theory of these models will be
given and the simulation results will be discussed. The predicted bubble size resulting
from the coalescence and break-up models, are compared to experimental data.
In Chapter 4 the Euler-Euler model, used to study the dynamics of large-scale bubble
columns, is compared to experimental PIV results. In this model the LES turbulence
model is implemented as well as models to describe the bubble size distribution. The
simulation results are compared to experimental data.
In Chapter 5 the experimental technique is presented. The video-imaging technique is
used to measure the bubble size distribution and mean bubble diameters. This technique
is used in a pseudo 2D column. The theory and validation of the technique is described
and the results obtained with the technique are presented. These results can, in turn, be
used to validate the DBM and Euler-Euler model.
In Chapter 6 the main conclusions of this thesis are presented and recommendations for
future work are given.
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Chapter 2

VOLUME OF FLUID AND FRONT TRACKING MODEL

Abstract

In this chapter two interface tracking models are presented, i.e. the 2D volume of fluid
model and the 2D and 3D front tracking model. These models are used to study the
detailed time-dependent behaviour of bubbles rising in a liquid. The models solve the
incompressible Navier-Stokes equation on a staggered Cartesian mesh to obtain the flow
field. In the Youngs’ VOF method the interface is ‘tracked’ through the Eulerian mesh by
reconstruction of the gas-liquid interface from the local liquid fraction data. The
calculation of the surface tension force is based on a model, which was adapted from the
front tracking technique instead of the frequently used continuum surface force model.
The front tracking method uses an unstructured dynamic mesh to represent the interface
surface and tracks this interface explicitly by the interconnected marker points. With
these models the forces acting on a bubble have been calculated and compared to
relations from literature. The drag coefficients in the 2D model agree very well with
relations from literature. The drag coefficients for larger bubbles in the 3D model differ
from these relations. The agreement between 2D and 3D simulations and literature for
the virtual mass coefficient was good. A bubble in a shear field does not rise in a straight
line, but oscillates in the horizontal direction and moves to one side of the column. An 8
mm bubble moves to the side with highest slip velocity, a 10 mm bubble moves to the side
with the lowest slip velocity. When using a lower shear rate, the movement of the bubble
is smaller. Due to the horizontal oscillations, the lift coefficient changes accordingly. The
values of the lift coefficient are higher than the values in literature (Tomiyama, 1998).
The shape of a bubble of 8 mm is approximately ellipsoidal during the oscillations. The
shape of a bubble of 10 mm changes during the oscillations. The bubble is ellipsoidal and
during the turn the shape changes to wobbling.
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2.1 Introduction

Bubble columns are encountered in a variety of industrial processes and are commonly
used as reactors for gas-liquid reactions. Therefore the design and scale-up of these
bubble columns is of great economic interest. Gas-liquid bubble columns can operate in
several regimes, depending on the superficial gas velocity, the physical properties of the
phases and the aspect ratio of the column. In the homogeneous regime the superficial gas
velocity is low and the bubbles are small, spherical and of approximately the same size.
The heterogeneous regime is the most important regime for industrial bubble columns. In
this regime break-up and coalescence of bubbles occurs. Due to bubble break-up and
coalescence bubbles of widely varying size and shape can be observed. This regime is
characterised by intermediate gas velocities and the liquid flow field is characterised by
inherent unsteadiness and dominated by a variety of vortical and turbulent structures. The
larger bubbles in this regime are important because of their significant impact on the
contact between gas and liquid and thus on the overall performance of the bubble column
as a chemical reactor. The fundamental knowledge regarding the hydrodynamics of
bubble column operation in the heterogeneous regime is still lacking.
Due to the increased computer capacity the fundamental modelling of multi-fluid
problems have come within reach. Significant research effort has been made to develop
detailed computer models that can provide detailed information about the hydrodynamics
of bubble columns.

2.2 Shapes of the bubbles

The shape of the bubble is dependent on the properties of the liquid and the gas.
Grace (1973) and Grace et al. (1976) presented a diagram, which shows the
(experimentally determined) effect of fluid properties and the bubble diameter on the
shape and the terminal rise velocity of a single bubble. This so-called Grace diagram is
reproduced in Figure 2.1. Three dimensionless numbers, which are related to each other,
are presented in this diagram, i.e. the Reynolds number (the ratio of the inertial to the
viscous force), the Eötvos number (the ratio of gravity to surface tension force) and the
Morton number (combination of the properties of the liquid and the gas phase).
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Another dimensionless number, that gives the ratio of inertial to surface tension force, is
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Figure 2.1: Graphical correlation by Grace (1973) and Grace et al. (1976).

The Grace diagram contains three main regimes in which the bubbles have different
shapes: The spherical, ellipsoidal and spherical-cap regime. The boundaries between the
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spherical-cap regime and the other two regimes are relatively well defined. The
spherical-cap regime consists of three sub-regimes: Spherical-cap, skirted and dimpled.
The ellipsoidal regime consists of two sub-regimes: Wobbling and ellipsoidal. Bubbles
are spherical at low Re, no matter how large the value of Eo. It is more difficult to
distinguish clearly between the spherical and ellipsoidal regime. This arises partly
because of a lack of data, but also because the amount of eccentricity, which can be
tolerated before a bubble is considered ellipsoidal, is arbitrary. A further complication is
that bubble deformation is affected somewhat by the amount of surface-active species
present. The boundary in the diagram in somewhat arbitrary, but is thought to give a
reasonable estimate in case the ratio of minor to major semi-axis is about 0.9
(Grace, 1973).

2.3 Interface tracking methods

Interface tracking methods can be divided into front tracking and volume tracking
models. Rider and Kothe (1995) gave a good overview of the different tracking methods.
In this section a brief overview of the latest developments is given.

To indicate the location of the interface in the front tracking methods an unstructured
mesh is generated at the gas-liquid interface. The interface consists of elements, usually a
connected set of points or triangles to form a continuous moving surface (Unverdi and
Tryggvason, 1992; Tryggvason et al., 2001). The calculation of the interface in front
tracking methods is very accurate. A disadvantage is that the volume of the bubble is not
intrinsically conserved. Front tracking methods are very complex, because of the
interaction between the moving boundary and the Eulerian mesh employed to solve the
flow field. Front tracking is best suited for well-defined fronts that are easily identifiable
in the initial conditions.

Volume tracking methods track the motion of the volume of both fluids separated by an
interface and not the motion of the interface itself. The motion of the interface is tracked
indirectly through the motion of the fluids. Volume tracking methods are popular,
because they are reasonably accurate and generally relatively simple to implement. In
these methods a marker particle or marker function, used to reconstruct the interface, is
advected with the flow. Examples of volume tracking models are shock capturing
methods, level set methods, marker particle methods and volume of fluid methods.
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Shock capturing methods discretise the transport equation of the liquid using a high order
(usually second order) shock-capturing scheme. These methods work less well for the
sharp discontinuities generally encountered in multiphase flows. They require a relatively
fine grid to obtain accurate solutions. Rider and Kothe (1995) used a high order Godunov
method and evaluated this method by several numerical tests. They concluded that in all
cases the use of shock capturing methods was inadequate.

Ida (2000, 2003) proposed an improved unified solver for compressible and
incompressible fluids involving free surfaces, based on the CIP-CUP (Cubic Interpolated
Propagation/Combined Unified Procedure) method, by adapting several improvements
and modifications. This is a pressure-based semi-implicit solver for the Euler equations.
Ida (2000) proposed an improved scheme for the convection terms in the equations. Ida
(2003) adapted the multi-time step integration technique, which makes the determination
of the time interval very flexible. High accuracy and excellent robustness of the improved
methods have been demonstrated.

Numerical diffusion generated near discontinuities by high-resolution shock-capturing
schemes is often too excessive for interface tracking. Level set methods are designed to
minimise the numerical diffusion. These methods draw upon existing advection
algorithms, but employ them in a manner that minimises the problematic diffusion.
Fundamental to the level set approach is the definition of the interface as the zero level
set of a distance function from that interface. The advection of this distance function
evolves through the solution of the transport equation of the liquid fraction. Level set
methods are conceptually simple and relatively easy to implement. In case of simple
flows these methods give accurate results. When the interface is significantly deformed
or with appreciable vorticity in the flow field, level set methods suffer from severe loss of
mass and thus loss of accuracy.

Marker particle methods are perhaps the simplest volume tracking methods. They use
marker particles that are assigned an identity (‘colour’) based on the fluid in which they
reside. The marker particles are pegged to the particular fluid and their motion is tracked
in time. The instantaneous positions of the marker particles are used to derive the relevant
Eulerian fluid properties and the position of the gas-liquid interface. Marker particle
methods are extremely accurate and robust, but they are complex and expensive (in terms
of CPU time and storage). These complexities arise when the interface stretches
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considerably. This requires additional marker particles, which have to be generated
during the computation.

In the VOF methods a fractional volume or marker ‘colour’ function is defined that
indicates the fraction of the liquid in mesh cell and thus the gas-liquid interface. This
marker function is advected by the flow. Several different interfaces might correspond to
the field of liquid fractions. To calculate the interface configuration from these fractions
an interface orientation is assumed. The interface is represented as a straight line that
truncates the cell with a volume equal to the liquid fraction in that cell. A number of
different techniques have been proposed that differ in their assumptions about this
interface geometry.  The better known volume advection methods are the simplified line
interface calculation (SLIC) method of Noh and Woodward (1976) and the donor-
acceptor algorithm published by Hirt and Nichols (1981). Youngs (1982) significantly
improved the VOF methods by allowing a multi-dimensional and piecewise linear
interfaced geometry. The Youngs’ algorithm and its extension (Pilliod, 1992) is referred
to as the PLIC (piecewise linear interface calculation) algorithm. The PLIC method has
been improved considerably since its introduction including second-order reconstruction
and unsplit advection. The accuracy and capability of these modern PLIC VOF
algorithms greatly exceeds that of the older VOF algorithms such as Hirt and Nichols
(Kothe and Rider, 1995a and 1995b, Rider et al., 1995, Rider and Kothe, 1995, Rudman,
1997). PLIC methods have inherent mass conservation and can be made to rigorously
conserve mass. A negative point is that these methods exhibit strong numerical surface
tension when a body becomes too thin for the mesh it resides on.

Shahbazi et al. (2003) presented a second order accurate piecewise linear volume
tracking based on remapping for triangular meshes. This approach avoids the complexity
of extending unsplit second order volume of fluid algorithms on triangular meshes. The
method is based on Lagrangian-Euler methods. The details of the normal line finding are
given for two methods: Differential least squares (DLS), which has a first order accuracy
and geometric least squares (GLS), which had a second order accuracy. GLS is superior
to the DLS method in both error values and convergence rate. However, the volume is
not conserved.
Sussman and Puckett (2000) and Sussman (2003) developed a coupled level set/volume
of fluid (CLSVOF) method for representing the free surface in two-phase flow problems.
This method combines some of the advantages of the volume of fluid method with the
level set method to obtain a method, which is generally superior to either of the
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individual methods. They tested the CLSVOF method on two-dimensional, axi-
symmetric and fully three-dimensional flows and for all problems the CLSVOF method
produces results that are as good as or better than those produced by the individual
methods. The CLSVOF method conserves mass as well as or better than the level set
method while retaining the advantage of the simpler, and probably more accurate, method
of computing surface tension that characterise level set methods. For problems with
surface tension the CLSVOF method is generally superior to the VOF methods.

Ginzburg and Wittum (2001) developed a two-phase 2D model that combines the VOF
method with implicit staggered finite volume discretisation of the Navier-Stokes
equation. This model adaptively refines the interface or produces a grid that is aligned
with it. In computations with the interface aligned grids, the jumps of the pressure and the
continuity of the viscous stresses are kept on the front. The surface tension force on cubic
spline aligned grids is accurately computed and the parasite currents disappear when the
interface is represented as a true circle. Although the current representation of the
interface is based on the VOF method, on regular grid, the model can work with other
front descriptions. One can reconstruct the zero level set from the level set function
provided by the level set approach.

The main progress witnessed over the past years is the advent of many three-dimensional
calculations for volume tracking techniques (Scardovelli and Zaleski, 1999; Gunsing et
al, 2004). At the moment two-dimensional calculations produce either highly accurate
results or calculations over impressively large grids. The level set method seems
attractive due to its simplicity but has not yet produced the wide range of results,
especially in three-dimensions, achieved by the older methods. The VOF method has
been considerably improved by the systematic use in the scientific literature of the higher
order piecewise linear calculation method. For engineering applications new methods
need to be developed that could adapt to complex geometries.

To study the time-dependent behaviour of the larger bubbles in a fundamental way, the
2D volume of fluid model (Youngs, 1982; Rudman, 1997) and the 2D and 3D front
tracking models (Unverdi and Tryggvason, 1992) are used in this work. The VOF model
is used to study the forces acting on bubbles, i.e. the drag and virtual mass force in more
detail in a 2D model. The lift force is studied using a 2D front tracking model. The results
of the drag and virtual mass coefficient of the 2D VOF model are compared to results of
the 3D front tracking model to study the 3D effects.
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The 2D VOF model resolves the time-dependent motion of the gas and liquid phases and
of the interface between the two phases. This finite difference model is robust, accurate
and has a very good mass conservation. The VOF model is able to account for substantial
changes in the topology of the gas-liquid interface induced by the relative liquid motion
due to its advanced interface tracking scheme.
One of the main advantages of the front tracking model is the accurate calculation of the
interface, which has significant effect on the bubble shape and bubble dynamics. A
disadvantage of the Front Tracking model is that the volume of the bubble is not
intrinsically conserved. The bubble volume slowly changes in time, due to the method
used to move the interface and the re-meshing of the interface mesh.

In this chapter the existing numerical approaches to interface tracking will be reviewed
and the Youngs’ VOF model and the Front Tracking model will be described in detail. A
known drawback of the Youngs’ VOF model is the poor calculation of the surface
tension force by the continuum surface force model (Brackbill et al., 1992), especially at
points where the interface has a strong curvature compared to the computational mess
size. In this chapter a new surface tension model, the tensile force model, will be
introduced into the model.

2.4 Volume of fluid model

The 2D volume of fluid model, described in this chapter, resolves the time-dependent
motion of the gas and liquid phases and of the interface separating the two phases. In this
chapter the 2D Youngs’ VOF model, developed at the University of Twente (Delnoij,
1999), will be described. With this model the velocity of a rising bubble in horizontal and
vertical direction can be determined. The velocity can be used to describe the forces
acting on a bubble rising in a liquid. For spherical bubbles it is relatively simple to
calculate the forces exerted by the liquid on the bubble. For non-spherical bubbles it is
more complicated to calculate these forces.

The VOF model used in this thesis consists of two coupled parts: A part that ‘tracks’ the
liquid volume through the Eulerian mesh and a part that solves the gas and liquid flow
field. The model describes the hydrodynamics of the gas-liquid flow based on a single set
of conservation equations for mass and momentum. A ‘colour’ function is used to
identify the gas and liquid phases. Each of these parts will now be introduced.
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2.4.1 Gas-liquid interface

The VOF model defines a volume fraction or ‘colour’ function F, which specifies the
liquid volume fraction in the computational cell. Only for 0<F<1 the grid cell contains a
gas-liquid interface. Within one cell only one interface segment is permitted. Cells
without interfaces have a volume fraction F equal to zero (gas) or unity (liquid).

The motion of the liquid and thus of the interface can be calculated by solving the
incompressible equation for the F-transport:

0DF F F
Dt t

∂= + ⋅∇ =
∂

u  (2. 5)

The value of F at the new time level is related to its value at the previous time level and
to the fluxes of F through the four cell faces by the finite difference approximation of this
equation. In order to maintain the rigidity of the interface the calculation of the
convective fluxes needs to be done with great care. The reconstruction of the interface is
done according to the Youngs’ method also referred to as the PLIC VOF method
(Youngs, 1982). This method is relatively easy to implement, very accurate and has a
very good inherent volume (mass) conservation, especially in flow fields with
considerable spatial and temporal variations. The method is robust and able to account for
significant changes in the topology of the gas-liquid interface, and implicitly accounts for
mergers between different interfaces or between different parts of the same interface.
The model used is derived from the method published by Rudman (1997) and
implemented by Delnoij (1999). This model is preferred because of its relatively simple
implementation compared to higher order methods (Zaleski, 1999) and because of its
superior performance compared to the classical model proposed by Hirt and
Nichols (1981). Good overviews of the accuracy of the different VOF methods are given
by Rudman (1997) and Zaleski (1999).
Exact interface locations are not known, at any time in the solution, i.e. a given
distribution of volume data does not guarantee a unique interface. Youngs’ VOF method
approximates the interface within a cell by a straight-line segment with a slope
determined from the interface normal n. The number of possible interface element types
needed to reconstruct the interface in a two-dimensional case is equal to 4. This gives
16 possible interface configurations, based on the orientation of the interface normal with
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respect to the co-ordinate axis. In the figure below the 4 possible interface elements are
shown. Rotating these 4 figures gives 16 possible configurations.
To reconstruct the interface of a computational cell first the normal n to the interface of
that cell has to be calculated. In the two-dimensional case this normal n is calculated
from the gradient of the liquid fraction of the computational cell itself and the eight
surrounding cells, resulting in a nine-point stencil. From the normal n and the liquid
fraction F the interface is reconstructed. The interface cuts the computational cell (i,j) in
such a way that the fractional volume of the liquid in the cell is equal to Fi,j.

Figure 2.2: Possible configurations of the gas-liquid interface in a cell.

Once the interface orientation and the velocities on the cell boundaries are known the
four side fractions of the cell containing an interface are calculated. With the use of these
side fractions, the fluxes through the four cell faces can be calculated. From these fluxes
the liquid fraction F at the new time step can be calculated and at the new time step the
flow field is solved again. The fluxes through the cell faces of cells that do not contain a
gas-liquid interface are calculated using second order accurate the Barton scheme
(Centrella and Wilson, 1984; Hawley et al., 1984).

2.4.2 Mass and momentum equations

To solve the flow field a one-fluid approach is used with local density and viscosity
variation to account for the different phases. The conservation equations for mass and
momentum for an incompressible fluid are given as follows:
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0∇ ⋅ =u (2. 6)

( ) ( )( )T
SFP

t
ρ ρ µ ρ∂ + ∇ ⋅ = −∇ + ∇ ⋅ ∇ + ∇ + +
∂

u uu u u g F (2. 7)

in which FSF is the surface tension force, which only acts in the vicinity of the interface.

Often (Rudman, 1998) simple linear weighing is used to calculate the local density and
viscosity as a function of the liquid fraction F:

( )1l gF Fρ ρ ρ= ⋅ + − ⋅ (2. 8)

( )1l gF Fµ µ µ= ⋅ + − ⋅ (2. 9)

Prosperetti (2001) derived another equation to calculate the viscosity. He showed that the
flow along the gas-liquid interface can be considered analogous to an electrical current
with two parallel resistances. When the Reynolds number is not too small, at an interface,
normal viscous stresses are usually negligible in comparison with pressure and surface
tension effects. With the neglect of normal viscous stresses and surface tension, the
pressure (the analogue of voltage) is equal on both sides of the interface. The two phases
(analogous to current) flow in parallel along the interface under the action of the same
pressure gradient. Thus the total resistance is a combination of two resistances in parallel,
which results in:

gl

l g

F F
ρρρ

µ µ µ
= + (2. 10)

2.4.3 Surface tension force

Continuum surface force model

In many VOF models (Rudman, 1997; Delnoij, 1999) the surface tension force FSF in
equation 2.7 is computed using the continuum surface force (CSF) model of Brackbill
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et al. (1992). This model interprets surface tension as a continuous, three-dimensional
effect across an interface, rather than a boundary value condition on the interface.

In the CSF model the surface force per unit interfacial area can be written as:

2SF F σ κ= ⋅ ⋅ ⋅ ⋅F n  (2. 11)

in which σ is the surface tension force, κ is the curvature and n is the normal to the
interface given by:

F= ∇n (2. 12)

The volumetric surface tension force FSF is calculated at cell centres and interpolated to
the cell faces.

The local surface curvature κ is given by:

( ) ( )1κ
  

= − ∇ ⋅ = ⋅∇ − ∇ ⋅      

nn n n
n n

% (2. 13)

in which n%  is the unit normal at the gas-liquid interface.

The implementation of the CSF model in the Youngs’ VOF model, including wall
adhesion, is similar to the implementation followed by Kothe et al. (1991) in their
RIPPLE code. The surface curvature κ is calculated at the cell centres and the normal
vector n is calculated at the cell vertices.

The CSF model uses a nine-point stencil to calculate the normal n to the interface as well
as the derivatives of the normal, ∇n. Both are used for the calculation of the surface
curvature, which is needed to calculate the surface tension force. The derivatives of the
normal make the model sensitive to numerical errors in the liquid fraction field.
Therefore the curvature can only be calculated accurately if the curvature is relatively
small compared to the mesh size.
The errors in the surface tension force calculation, due to the calculation of the
derivatives of the normal and the curvature from this normal, cause the presence of
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unavoidable ‘parasite currents’ (Rudman, 1998). Figure 2.3 shows the simulation result
of the VOF model with a 4 mm air bubble positioned in water under zero gravity
conditions (Eo = 2.15 and M = 2.52.10-11) and the simulation result of Lafaurie
et al. (1994). In both cases the bubble is surrounded by a small amplitude velocity field
having a four-fold symmetry of lattice. These ‘parasite currents’ are due to the slight
unbalance between the stresses at the sites in the interfacial region (Lafaurie et al., 1994).

Figure 2.3: Parasite currents in bubble simulations. Left: simulation of 4 mm bubble; right: simulation by
Lafaurie et al. (1994). Reference vector with length comparable to 0.10 m s-1.

Tensile force model

In this thesis, a new surface tension model, inspired by the model used by Bunner and
Tryggvason (1997) in their front tracking codes, is used. This model avoids the
calculation of the derivative of the normal n. The new model calculates the surface
tension force on the edge of the surface elements using the normal vectors to the adjacent
surface elements. This enables an accurate computation of the surface tension force over
a large range of curvatures. This method produces significantly smaller parasite currents.

In this tensile force model the surface tension force is directly calculated from the
interfacial tensile forces acting on the interface segment in the computational cell by the
interface segments of the adjacent cells. The model uses the orientation of the interface in
the computational cell and the four side fractions. When a cell contains an interface two
of the four side fractions of that cell are unequal to zero. Once these side fractions are
known, the starting and end point (point 1 and 2) of the interface segment in the cell are
known (see Figure 2.4).
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Figure 2.4: Start and end point of interface segment in cell.

At points 1 and 2 the tensile forces T1 and T2 in the directions t1 and t2 are acting on the
interface segment in the computational cell by the interface segments of the adjacent
cells, where t1 and t2 are the tangential unit vectors of the adjacent cells defined by the
two interface segments of the adjacent cells.

The force exerted on the interface segment between the points 1 and 2 is calculated by:

( )1 2 1 2 lσ− ⊥= ⋅ − ⋅F t t  (2. 14)

with l⊥ the length perpendicular to the x,y-surface.
The x- and y-components of the force are calculated at the centres of the interface
segment in the cell. They can be subsequently distributed to the cell centres or the Peskin
function (Peskin, 1977) can be used for the distribution. In the simulations in this work
the Peskin function (Peskin, 1977) is used.

Peskin function

The x- and y-components of the surface tension force can be distributed to the Eulerian
nodes with the use of an area-weighed technique or the method developed by
Peskin (1977). The last method is used to avoid instabilities due to steep gradients near
the interface.
When using the Peskin method the surface tension force is smoothed. This smoothed

surface tension force SFF  is computed from the following expression:

1

2

cell 1 cell 2

n1

n2

T1

T2
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( )SF SFD= −∑F x x F (2. 15)

where the smoothing function ( )D −x x  is an integrated version of the one given by

Peskin (1977):

( ) ( )1 1 cos
2

D
nh nh

  − = + −    
x x x xπ  (2. 16)

in which 2n is the number of grid cells over which the Peskin function is smoothed, x is
the position of the data which will be smoothed, x  is the centre of the distribution
function and h is the grid spacing in the particular direction.

The function used in the VOF model uses an integrated version of equation 2.16:

( ) ( ) ( )1 sin sin
2 j i j i

nhD
h nh nh

     − = − + − − −          
x x x x x x x xπ π

π
  (2. 17)

where xi and xj are the boundaries of the integration step.

Comparison of the two models

A first check on the performance of the tensile force model is the reduction of the
‘parasite currents’. In the CSF model these ‘parasite currents’ are computed for a 4 mm
air bubble positioned in water under zero gravity conditions (Figure 2.3).
In Figure 2.5 a simulation result with the tensile force model is the same case. The
‘parasite currents’ are reduced when using the tensile force model, as can be seen in
Figure 2.5. The asymmetric parasite currents in the right figure can probably be caused
by round off or break off errors.
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Figure 2.5: Simulation results of bubble simulation of 4 mm. Left: continuum surface force model; right:
tensile force model. Reference vector with length comparable to 0.10 m s-1.

Another check has been carried out by comparing the tensile force model simulation
results for the excess pressure inside a bubble to the analytical solution, calculated by the
Youngs-Laplace equation, given by:

1 2
2

b

P P
r

− = σ (2. 18)

For an air bubble in water with a radius of 2 mm the analytical solution of the pressure
difference is 73.0 Pa. The pressure difference for the simulation results of the tensile
force model is 73.0 Pa and for the simulation results of the CSF model 32.0. In Figure 2.6
the different results can be seen. Since the Youngs-Laplace equation can only be used for
spherical bubbles these results are for the initial part of the simulation, when the bubble is
still spherical. The tensile force model gives much better results than the CSF model.
When comparing the pressure difference predicted by CSF model and the tensile force
model, the tensile force model shows a steeper gradient at the interface (see
Figure 2.6).

A final check is the comparison of shapes of rising bubbles. Grace (1973) and Grace et
al. (1976) presented a diagram, which shows the (experimentally determined) effect of
fluid properties and the bubble diameter on the shape and the terminal rise velocity of a
single bubble (Figure 2.1). In Figure 2.7 the simulation results of a rising air bubble in
water with a diameter of 4 mm (Eo = 2.15 and M = 2.52.10-11) using the CSF model and
the tensile force model are shown. In Figure 2.8 the results of a 6 mm bubble (Eo = 4.84
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Figure 2.6: Pressure difference.

and M = 2.52.10-11) can be seen. In both figures also the results of the 3D front tracking
model are shown. These results are compared to the Grace diagram (Figure 2.1). An air
bubble with a diameter of 4 mm or 6 mm in water is in the wobbling regime, according to
this figure. From the simulation results can be concluded, that the bubble shape of a 4
mm computed by the CSF model is in the ellipsoidal regime. A 6 mm bubble computed
by the CSF model is in the spherical cap regime. The bubble shape computed by the
tensile force model is in line with the results in the Grace diagram.

Figure 2.7: Simulation results of a bubble with a diameter of 4 mm. Left: CSF model; middle: tensile force
model; right: 3D front tracking.

Figure 2.8: Simulation results of a bubble with a diameter of 6 mm. Left: CSF model; middle: tensile force
model; right: 3D front tracking.
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2.5 Front tracking

To compare the 2D VOF simulation results to 3D simulation results and to study 3D
effect the 3D front fracking model is used. The front fracking technique is based on direct
numerical simulation and has been introduced by Unverdi and Tryggvason (1992). The
front tracking method uses an unstructured dynamic mesh to represent the interface
surface and tracks this interface explicitly by the interconnected marker points. This
technique has excellent capability to calculate the surface tension forces, which have
significant effect on the bubble shape and bubble dynamics. Other models like the VOF,
level set or MAC models show less good and detailed calculations of the surface tension
forces.

2.5.1 Model description

The conservation equations for mass and momentum for an incompressible fluid
(one-fluid approach) are given by equation 2.6 and 2.7. These equations have been solved
with a finite volume technique on a staggered rectangular three-dimensional grid using a
two-step projection-correction method with an implicit treatment of the pressure gradient
and explicit treatment of the convection and diffusion term. For the calculation of the
density and the viscosity equations 2.8 and 2.9 are used.
For the local liquid fraction the indicator function F is used. In the front tracking model it
is assumed that this indicator function is conserved:

0DF
Dt

= (2. 19)

In the Front Tracking method this conservation equation, based on the incompressibility,
is not solved directly, but evaluated from the position of the interface (mesh), which is
moved every time step.

2.5.2 Interface description

Generally a front structure is used that consists of points connected by elements. In the
three-dimensional fronts the three points are connected by a triangular element to form a
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continuous interface. From this mesh the indicator function F, on the Cartesian grid, is
computed.

The local distribution of the indicator function F is computed from the location of the
triangulated interface by solving a Poisson-equation, following the method proposed by
Unverdi and Tryggvason (1992):

( )2
m m m

m
F D s∇ = ∇ ⋅ − ∆∑ x x n (2. 20)

where m the interface element, nm is the outwardly pointing normal on the interface
element m and ∆sm is the surface area of this element. The function D represents a
numerical approximation of the Dirac-function normalised to the cell volume. In the used
model volume weighing proofed to be sufficiently stable (Van Sint Annaland
et al., 2003). A robust incomplete Cholesky conjugated gradient (ICCG) algorithm has
been used to solve the Poisson-equation for the F-field.

2.5.3 Surface tension force

One of the main advantages of the front tracking model is the accurate calculation of the
interface. The surface tension forces are computed from the tensile forces on the three
edges l of all interface elements m (see Figure 2.9). In previous work (Van Sint Annaland
et al., 2003) these forces were subsequently distributed to the Eulerian grid via volume
weighing.

( ) ( )SF m, m, m,
m

D= − σ ⊗∑∑F x x t nl l l
l

(2. 21)

where tm,l is the tangential vector to edge l of marker m. In this model the normal and
tangent vectors of the edges of the elements are used, which can be obtained directly
from the interface marker data, in contrast to the method used by Tryggvason et al.
(2001), where a polynomial fit for the interface is constructed from which the normal and
tangent vectors to the element are calculated. In order to avoid distribution the surface
tension force to cells that have very low liquid volume fractions, which would results in
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large distortions of the velocity field near the interface, a “mass weighing” function has
been used (Deen et al., 2004):

( ) ( )
( )

m, m, m, m,
m

m, m,
m

D

Dσ

ρ σ

ρ

− ⊗
=

−

∑∑
∑∑

x x t n
F

x x

l l l l
l

l l
l

(2. 22)

2.5.4 Restructuring the interface mesh

When the surface of a bubble is moved, the shape of the bubble can change due to the
flow in the column and the surface mesh deforms. If too many elements are used
stretching and shrinking of the surface elements can cause numerical problems after some
simulation time.
To restructure the surface mesh methods used by Tryggvason (2001) are implemented.
The most evident restructuring is the addition or the removal of new surface elements
when one of the edges of an element becomes too long or too short.

Figure 2.9: Schematic representation of the calculation of the three tensile forces acting on the three edges
of interface marker m.
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2.6 Forces acting on bubbles

The VOF model can be used to study the time-dependent behaviour of bubbles rising in a
liquid in a fundamental way. This model can be used to develop closure relations, which
can be used in models, which can simulate the flow in industrial bubble columns. Closure
relations for the forces acting on bubbles are used in the Euler-Euler and Euler-Lagrange
models.

The total force acting on a bubble rising in a liquid flow can be decomposed of separate
and uncoupled contributions of gravity (FG), pressure gradient (FP), drag (FD), lift (FL),
virtual or added mass force (FVM) (Auton, 1983):

tot G P D L VM= + + + +F F F F F F (2. 23)

The acceleration of a rising bubble can be calculated by Newton’s second law:

B tot
dm
dt

=v F (2. 24)

Each of the forces in equation 2.23 will be discussed in the following sections.

2.6.1 Gravity and pressure gradient

The force acting on a bubble due to gravity and pressure gradient, also called the
buoyancy force, results in a net upward force. The equation for the gravity force is given
by:

G g BVρ=F g  (2. 25)

The force acting on a bubble due to the pressure gradient in the liquid phase incorporate
contributions from the Archimedes displacement force, inertial forces and viscous strain
in the liquid:

P B l BV P Vρ= − ∇ = −F g  (2. 26)
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It is noted that g points in the negative y-direction. The combination of equation 2.25
and 2.26 gives the equation for the buoyancy force:

( )Buoyancy G P g l BVρ ρ= + = −F F F g  (2. 27)

2.6.2 Drag force

A bubble, moving in a column with a uniform flow field, experiences a drag force
exerted by the liquid on the moving bubble. This drag force consists of a form drag and
friction drag. Odar and Hamilton (1964) gave the following relation for the drag force
acting on a sphere. The force is proportional to the relative velocity between the bubble
and the fluid (v - u) and acts in the opposite direction to the path of the bubble.

( )21 1
2 4D D l BC dρ π= − − −F v u v u (2. 28)

The drag force in this equation depends on the bubble size and the flow regime (laminar
or turbulent).

The former is characterised by the dimensionless Eötvös number:

2

Eo Bgd ρ
σ

∆=  (2. 29)

while the latter is represented by the Reynolds number:

Re l B

l

d vρ
µ

=  (2. 30)

Tomiyama (1998) derived some equations for the drag coefficient of single bubbles for a
wide range of fluid properties, bubble diameters and acceleration of gravity. These
equations are based on a balance of forces acting on a single bubble in an infinite
stagnant liquid and on available empirical correlations for the terminal rise velocities of
single bubbles.
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Tomiyama (1998) proposed three equations, which corresponds to a pure, slightly-
contaminated and contaminated system, and are respectively given by:

( )0.68716 48 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC   = +   +  

 (2. 31)

( )0.68724 72 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC   = +   +  

 (2. 32)

( )0.68724 8 Eomax 1 0.15Re ,
Re 3 Eo 4DC  = + + 

  (2. 33)

The difference between the pure and contaminated systems is due to the difference in
internal circulation inside the bubble, which does not occur for bubbles in contaminated
liquid.
Tomiyama compared the results of the calculated terminal rise velocities of single
bubbles in stagnant liquids using the proposed CD with measured data (Grace et al, 1973)
under the condition of 10-2 < Eo < 103, 10-14 < M < 107 and 10-3 < Re < 105. Figure 2.10
shows the results of the comparison. The calculated terminal rise velocity agreed well
with the measured data.

Figure 2.10: Verification of the CD model: measured data were quoted from Grace et al. (1973)
(Tomiyama, 1998).
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As can be seen in Figure 2.10 at some point the slope of the different lines changes. This
is due to the change of shape of the bubbles. For small bubbles the standard drag curve is
applicable. For larger bubbles surface tension effects become dominant and the Eötvös
curve is used.

2.6.3 Lift force

A bubble, rising in a non-uniform liquid flow field, experiences a transverse lift force due
to vorticity, rotations of bubbles or shear. The lift force consists of two parts: The
classical shear-induced lateral lift force and the wake induced lift force. Both forces act
simultaneously on the bubble. For small, spherical bubbles the classical shear-induced
lateral lift force dominates and for large, deformed bubbles the transverse lift force
dominates.

Auton (1987) derived that the lift force is proportional to the cross product of the slip
velocity and the curl of the liquid velocity. This implies that the lift force is perpendicular
to the path of the bubble.

( )L L l BC Vρ= − − × ΩF v u   (2. 34)

Ω = ∇ ×u

The expression for the lift force is valid under the assumption of local homogeneity of the
flow. This assumption is satisfied throughout the homogeneous regime where both
bubble radius and liquid velocity gradients are rather small.

In Figure 2.11 the values for the lift coefficient for an air bubble in water for different
diameters of the bubble is shown (Tomiyama, 1998). In this figure can be seen, that the
value of the lift coefficient changes from 0.3 to -0.3 depending on the size of the bubble.
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Figure 2.11: Transverse lift coefficient for air bubble in water (Tomiyama, 1998).

2.6.4 Virtual mass force

The virtual mass force, also called the added mass force, is especially important in cases
of unsteady rise when a bubble accelerates or decelerates, e.g. near the nozzle or in a
turbulent field. When the velocity of the bubble changes, the velocity of the liquid around
the bubble changes accordingly. The force can be seen as a resistance to acceleration, as
the ‘added mass’ of the liquid also has to be accelerated along with the bubble. According
to Auton (1983) the virtual mass force can be modelled by:

VM
D
Dt

 = − + ⋅∇  
IF I u (2. 35)

( )VM l BC Vρ= −I v u

The value of the virtual mass force is considered to be independent of the void fraction
and for spherical bubbles CVM is taken equal to 0.5 in 3D systems and 1.0 in 2D systems
(Auton, 1988; Lamb, 1932).
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2.7 Derivation of drag, lift and virtual mass coefficient

In this section expressions for the drag, lift and virtual mass force coefficient will be
derived. These expressions will be used in the other models in the ‘hierarchy of models’.
The drag and lift forces are the most important forces acting on a bubble rising in a
liquid. The virtual mass force is only important during acceleration or deceleration of the
bubble.

2.7.1 Drag coefficient

The relation for the drag coefficient for spherical and non-spherical bubbles can be
derived by solving a force balance for a single bubble rising steadily in a quiescent liquid.
The contribution of the virtual mass can be neglected, as the virtual mass is only
important during the acceleration of the bubble (when a bubble starts to rise in the liquid)
or in a turbulent field. In absence of a shear field the lift force is zero and because of the
presence of only one bubble there is no hydrodynamic interaction between neighbouring
bubbles. For this system the force balance is given by

tot P G D= + +F F F F  (2. 36)

The total force Ftot equals zero when the bubble reaches its stationary rise velocity.
In case the bubble only moves in the vertical direction the force balance reduces to:

( ) ( )1 0
2l g B D l p y yg V C A v uρ ρ ρ− − − − =v u  (2. 37)

The volume of the bubble is 31
6 Bdπ ,with dB the equivalent diameter of a spherical bubble.

The projected surface Ap is defined as 21
4 pdπ , with dp the projected diameter during steady

rise. For spherical bubbles dp is the same as dB, however, for non-spherical bubbles dp

differs from dB.
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Rearrangement of equation 2.37 leads to the following equation for the drag coefficient:

( )
3

,3 2

4
3

l g B
D D

l p y y

d g
C

d v u
ρ ρ

ρ
− 

=   − −  v u
(2. 38)

As some of the simulation are carried out in 2D, it would be more accurate to derive a CD

equation for a cylinder because a 2D bubble stretches out to a cylinder in 3D with a

volume of 1
4

2
Bd Lπ  and a projected surface of pd L . The resulting CD is:

( )
2

,2
1
2

l g B
D D

l p y y

d g
C

d v u
ρ ρ π

ρ
− 

=   − −  v u
 (2. 39)

These equations will be used to calculate the drag coefficient for bubbles of different
sizes in an air-water system.

2.7.2 Lift coefficient

For spherical and non-spherical bubbles the lift coefficient is calculated by solving the
force balance on a bubble rising in a shear field. In this case again the virtual mass can be
neglected and the hydrodynamic interaction is neglected.
The forces due to drag and lift have an x- and y-component. When the bubble has
reached a stationary rise velocity two force balances can be derived, one for each
direction. The x-balance in stationary state is:

, , 0D x L xF F+ = (2. 40)

Substitution of the equations for the x-component of the drag and lift forces gives:

( ) ( )2 31 1 1 0
2 4 6

y
D l p x x L l B y y

du
C d v u C d v u

dx
ρ π ρ π− − − − − =v u  (2. 41)



Chapter 2

48

After rearrangement an equation for CL is obtained:

( )

( )

2

3

3
4 D p x x

L
y

B y y

C d v u
C du

d v u
dx

− − −
=

−

v u
(2. 42)

The balance for the y-direction consists of the y-component of the drag and lift force and
the forces due to a pressure gradient and gravity.

, , 0P G D y L yF F F F+ + + = (2. 43)

Substituting the equations for these forces gives a second equation for the lift coefficient:

( ) ( )

( )

3 3

3

3
4

l g
B D p y y

l
L

y
B x x

g d C d v u
C du

d v u
dx

ρ ρ
ρ
−

− + − −
=

−

v u
(2. 44)

Equation 2.42 and 2.44 can be combined to derive an equation for both the lift and drag
coefficient

( )

2

l g
x x

l
L

y

g v u
C

du
dx

ρ ρ
ρ
−

− −
=

 −  
 

v u
(2. 45)

( ) ( )3

32

4
3

l g
B y y

l
D

p

g d v u
C

d

ρ ρ
ρ
−

−
=

−v u
 (2. 46)

Note that equation 2.46 reduces to equation 2.39 in absence of a shear field.
As can be seen in equation 2.45 the lift coefficient is independent of the diameter of the
bubble, dB. Therefore it can be concluded that CL,3D = CL,2D.



Volume of fluid and front tracking model

49

2.7.3 Virtual mass coefficient

The virtual mass coefficient can be obtained from the first part of the simulation. At t=0 s
the bubble is placed in the column and starts to rise in the liquid. First an acceleration of
the bubble can be seen, before it reaches a stationary rise velocity. The virtual mass
coefficient can be obtained by fitting the simulated bubble acceleration with the equation
of motion. In absence of a shear field the lift force is zero and the hydrodynamic
interaction can be neglected.

tot P G D VM= + + +F F F F F  (2. 47)

Substituting the equations for the drag, lift and virtual mass force gives for the
acceleration in a 3D system:
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The acceleration for a 2D system is:
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The acceleration can be calculated from the simulations. When the drag coefficient is
known, the virtual mass coefficient can be determined.

2.8 Boundary conditions and numerical method

2.8.1 Volume of fluid model

The 2D VOF mode is used to calculate the drag and virtual mass force. In the VOF
simulations the bubble column is initially filled with a quiescent liquid. During the
initialisation step the pressure is set to the hydrostatic pressure. The initial position of a
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spherical gas bubble is specified in the middle of the column at one bubble diameter from
the bottom (see Figure 2.12).
The liquid fraction of each cell is computed by first setting the cell values at 1 and
subtracting the fraction of gas present in each cell from that value. When the liquid
fraction is computed, the local density and viscosity are calculated and the bubble
interface is reconstructed. This interface is needed to calculate the surface tension force.
In the main loop the Navier-Stokes equations are solved and the second step is to
determine the interface information from the liquid fraction of each cell from the
previous time step. Once the velocity field and the interface data are determined, the
fluxes through the cell faces can be calculated. These fluxes are used to compute the new
liquid fractions in the cells. The last step in the main loop is updating the density,
viscosity and surface tension force. The final step at the end of the simulation releases the
computer memory and stores the final data.

Figure 2.12: Simulation set-up for the VOF-simulations.

In Figure 2.13 the computational flow diagram of the VOF model is shown.
The boundary conditions required to solve the system are imposed using a flag matrix
concept (Kuipers et al., 1993). On all the boundaries of the computational domain, except
the top, free slip conditions were applied. For the top the inflow/outflow conditions (zero
gradient) were used.

4.5dB4.5dB

18d

1dB
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For the discretisation of the convection term of the Navier-Stokes equation the second
order accurate Barton scheme (Centrella and Wilson, 1984; Hawley et al, 1984;
Goldschmidt, 2001) is used. The diffusive terms are computed using the second order
finite difference scheme.

Figure 2.13: Computational flow diagram of the VOF model.

The equations are discretised on a two-dimensional staggered mesh. The pressure-
Poisson equation is solved using the incomplete Choleski conjugate gradient (ICCG)
method.

The stabilility of the code is highly dependent on the choice of the time step. Three
stability criteria can be used for this code: Courant stability, viscosity stability and the
surface tension stability condition. For very small bubbles (1.0 and 2.0 mm) the time step
is 1.0.10-6 s, according to these three criteria. For bubbles > 2.0 mm the used time step is
1.0.10-5 s.
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To avoid wall effects the diameter of the column is set equal to 10 times the bubble
diameter. The number of cells initially assigned to the bubble diameter is 16. This is in
correspondence with the work of Tomiyama (1998).
In order to avoid numerical instabilities due to very steep gradients in the density or
viscosity the interface is extended over four Eulerian grid cells. In this transition zone the
fluid properties change smoothly from one side of the interface to the other.

2.8.2 Front tracking model

In the initialisation step of the front tracking model the velocities are set to zero, the
pressure is set to the hydrostatic pressure and the initial interface mesh is constructed.
From this interface mesh the surface tension forces are computed and the indicator field
is calculated. From the indicator field the local density and viscosity are calculated.

As shown in Figure 2.14 in the main loop the Navier-Stokes equations are first solved
yielding the flow and pressure fields. Then the interface nodes are tracked with the local
interpolated fluid velocity, which gives the new position of the interface nodes and
implicitly the new bubble shape. Finally the new surface tension forces, indicator field
and the density and viscosity are calculated.

In order to be able to handle very large density variations in gas-liquid flows the Navier-
Stokes equations 2.7 are rewritten in their non-conservative form using the continuity
equation given in equation 2.6:

( ) ( )( )T
SFP

t
ρ ρ∂ + ∇ ⋅ = −∇ + ∇ ⋅µ ∇ + ∇ + + ∂ 

u uu u u g F (2. 50)

For the discretisation of the convection term of the Navier-Stokes equation the second
order accurate Barton scheme (Centrella and Wilson, 1984; Hawley et al, 1984;
Goldschmidt, 2001) is used. The diffusive terms are computed using the second order
finite difference scheme.

The Navier-Stokes equations are solved on a staggered rectangular two- or three-
dimensional grid using a finite-volume method with a SIMPLE algorithm (Patankar,
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1980). The pressure-Poisson equation is solved using the incomplete Choleski conjugate
gradient (ICCG) method.

To limit the computational costs of the simulations a moving window concept is used.
The simulation domain travels along with the movement of the bubble. If the centre of
mass of the bubble moves to a neighbouring grid cell, e.g. in the positive z-direction, a
plane of grid cells is removed from the bottom of the simulation domain, while a plane of
grid cells is added to the top. The properties in the newly added grid cell are obtained by
extrapolating the local data.

Figure 2.14: Computational flow diagram of the front tracking model.

The lift force is calculated with the 2D front tracking model. No slip boundary conditions
are used for all walls except for the bottom of the computational domain, where a free
slip boundary condition is applied. The liquid flow in the shear field flows from the top
of the column to the bottom. This reduced the number of Eulerian computational cells in
the vertical direction. During the computation the computational domain is shifted in

initialisation

t < tend

solve Navier-Stokes equation

track interface

compute indicator fiels, density,
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such a way, that the centre of mass of the total gas content is kept more or less at 1/4
from the top of the domain (see Figure 2.15). This also reduces the number of Eulerian
computational cells to simulate a fast rising gas bubble. The diameter of the column is set
equal to 5 times the bubble diameter. The number of cells initially assigned to the bubble
diameter is 10. The time step used in the calculations for the lift force is 2.0.10-5 s.

Figure 2.15: Simulation set-up 2D front tracking simulations.

The 3D front tracking model is used to calculate the drag and virtual mass force in a 3D
system. In the 3D front tracking model no slip boundary conditions are used for all walls
except for the top of the computational domain, where a free slip boundary condition is
applied. During the computation the computational domain is shifted in such a way, that
the centre of mass of the total gas content is kept more or less at 1/5 from the top of the
domain (see Figure 2.16).

Figure 2.16: Simulation set-up 3D front tracking simulations.
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This reduces the number of Eulerian computational cells to simulate a fast rising gas
bubble. The diameter of the column is set equal to 5 times the bubble diameter. The
number of cells initially assigned to the bubble diameter is 10. The time step used in the
calculations for the lift force is 2.0.10-5 s.

2.9 Results

The most important information for the determination of the drag, lift and virtual mass
coefficient is the velocity of the bubble in the x- and y-direction. In the Youngs’ VOF
model this velocity is calculated from the position of the centre of mass of the bubble for
each time step. The bubble velocity is obtained by differentiating the position with
respect to time.
The x- and y-co-ordinates of the centre of mass of the bubble are calculated from the
colour function data as follows:
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2.9.1 Results drag coefficient

To calculate the drag curve for air bubbles in water, simulations were carried out for
bubbles of different diameters (1-10 mm). From the results of the calculations the
velocity and thus the Reynolds number and the drag coefficient were calculated.
The simulated drag curve is compared to the drag relations of Tomiyama (1998)
(equation 2.31), Ishii and Zuber (1979) and Grace et al. (1976).  The relation of Ishii and
Zuber (1979) is given by:
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2 Eo
3DC = (2. 53)

Grace et al. (1976) gave the following correlation for the terminal rise velocity of
ellipsoidal bubbles in contaminated systems:

Rel
b ,contaminated

l b

v
d

µ
ρ

= (2. 54)

For pure bubbles at low Re, the terminal velocity is related to that for the same system
under contaminated conditions by:

1(1+
2 + 3
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g

l

v v
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 =   
     

(Re < 0.2) (2. 55)

For systems with higher Re, equation 2.55 is an upper bound for the terminal rise velocity
of the system.
Re in equation 2.54 is given by:

0 149

J - 0.857Re =
M .  (2. 56)

where the correlation for J is:

0 7570 94 .J . H=  (2 < H ≤ 59.3) (2. 57)

0 4413 42 .J . H= (H > 59.3) (2. 58)
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with:
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(2. 59)

µw in equation (2.59) is the viscosity of water and may be taken as 0.0009 kg m-1 s-1

(Braida, 1956).
The relation of Grace et al. (1976) was derived for the following conditions:
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The discontinuity in the slope at H=59.3 corresponds approximately to the transition
between non-oscillating and oscillating drops or bubbles.

Figure 2.17: Simulations results of CD compared to drag curve from Tomiyama (1998), Ishii and
Zuber (1979) and Grace (1973) for a system with sphere.
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The results of the drag coefficient for the 2D VOF simulations can be seen in Figure 2.17.
In this figure equation 2.38 is used for a sphere without deformation (dp = dB). The values
of the first two points (Re < 500) are very close to the values of Tomiyama (1998) and
Ishii and Zuber (1979). For Re > 800 the CD calculated from the simulations is very close
to the values of Grace et al. (1976).

The results of the 2D VOF model are compared to results of a 3D front tracking model.
As can be seen in Figure 2.17 the 3D front tracking results and the 2D VOF results are
the same for low Re (Re < 1500). For higher Re (Re > 1500) the differences between the
3D front tracking results and the 2D VOF results are larger.

In Figure 2.18 the VOF results of the drag coefficient, using equation 2.39 for a cylinder
without deformation are shown. The values of the drag coefficients for a cylinder without
deformation are higher than the values of the drag coefficient for a sphere without
deformation, as can also be concluded from equation 2.38 and 2.39. The differences
between the 2D VOF simulation results and the drag relations from literature are larger
than for a system with a sphere (Figure 2.17). The 2D VOF and the 3D front tracking
results are close together in Figure 2.18.

Figure 2.18: Simulations results of CD compared to drag curve from Tomiyama (1998), Ishii and
Zuber (1979) and Grace (1973) for a system with cylinder.
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2.9.2 Results virtual mass coefficient

To calculate the virtual mass coefficients for air bubbles in water, simulations were
carried out for bubbles of different diameters (1 - 10 mm). When the drag coefficients are
calculated the virtual mass coefficients can be determined for the first part of the
simulation when the bubble accelerates. The bubble is placed in the domain as a sphere.
During the first part of the simulation the bubble deforms. To exclude this effect as much
as possible, only the first 0.1 s in the 3D front tracking and 0.2 s in the 2D VOF
simulations were considered.

In Table 2.1 the values of the virtual mass coefficient for the 2D VOF 3D front tracking
simulations are given. The virtual mass coefficient for the 2D VOF model for a sphere
and for a cylinder is the same.
As can be concluded from Table 2.1 the virtual mass coefficients for bubbles in 2D VOF
are around 1.1. This value for bubbles in 2D systems is in agreement with literature
(Auton, 1988; Lamb, 1932). For the 3D front tracking model the virtual mass coefficient
is around 0.6, the value for 3D systems (Auton, 1983).
The small deviation from the theoretical value of spherical bubbles is probably caused by
the deformation of the bubble.

Table 2.1: Virtual mass coefficient for 2D VOF and 3D front tracking.

dB [mm] CVM 2D VOF CVM 3D FT
1 1.3 -
2 1.3 -
3 1.3 -
4 1.2 0.6
5 1.1 -
6 1.1 0.6
7 1.1 0.6
8 1.0 0.6
9 1.0 0.6

10 1.0 0.6
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2.9.3 Results lift coefficient

To calculate the lift coefficients simulations were carried out with the 2D front tracking
model for two bubbles of different diameters (8 and 10 mm). Due to problems with the
mass conservation for small bubbles, only large bubbles subjected to a linear shear field
were studied.
In both cases the shear rate was 5 s-1. For the bubble with a diameter of 10 mm the results
of two different shear rates were compared (2 s-1 and 5 s-1). All cases were simulated for a
period of 3 s. The three different cases and the final results are presented in Table 2.2.

Table 2.2: Lift coefficient for 2D front tracking.

case dB

[mm]
shear rate

[s-1]
CL

1 8 5 0.6
2 10 5 -0.7
3 10 2 -1.0

In Figure 2.19 the x- and y-position of the bubble for case 1 is presented. Figure 2.20
shows the slip velocity in horizontal and vertical direction and Figure 2.21 shows the
values of the drag and lift coefficient for the bubble in case 1.

The slip velocity in horizontal direction is given by:

x ,slip x xv v u= −       with  0xu = (2. 61)

The slip velocity in vertical direction is given by:

y ,slip y yv v u= −    with     x Bu xγ= − ⋅  (2. 62)

As can be seen in Figure 2.19 the bubble is constantly rising in the column for t < 2 s. For
t > 2 s the bubble is moving to the right side of the column with a high negative liquid
velocity and the y-position of the bubble is constant. The bubble is oscillating in the
horizontal direction and on average moving to the right of the column. During these
oscillations the bubble first moves to the left side of the column and after 1 s it moves to
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the right side of the column. The right side of the column is the side with the highest slip
velocity.
The vertical velocity shows small oscillations, but is more of less constant, as is shown in
Figure 2.20. The horizontal velocity shows large oscillations due to the oscillating
movement of the bubble in the column. The bubble is oscillating from left to right and the
horizontal velocity is changing accordingly. Due to the change in horizontal velocity, the
lift coefficient shows the same oscillations (Figure 2.21). The average value of the lift
coefficient is given in Table 2.2.

Figure 2.22 shows the x- and y-position of the bubble in case 2. In this case the shear rate
remains the same (5 s-1), while the bubble size is increased from 8 to 10 mm. Figure 2.23
shows the velocity in horizontal and vertical direction and Figure 2.24 shows the values
of the drag and lift coefficient for the bubble in case 2.
The difference between case 1 and 2 is the movement of the bubble. In case 2 the bubble
is moving to the left side of the column, the side with the lowest slip velocity. The
average value of the lift coefficient is therefore negative (see Table 2.2).
Tomiyama (1998), who also studied the behaviour of large bubbles in shear fields,
concluded that the lift coefficient is dependent on the shape of the bubble.

The lift coefficient is positive for small bubbles and negative for large bubbles (see
Figure 2.11). He found that the mean lift coefficient varies from between 0.3 to -0.3 for
small and large bubbles respectively. The results in this work are different from the
results of Tomiyama (1998). The values of the lift coefficient in the simulations are
higher. Therefore the lift coefficient of a bubble of 8 mm is positive, which is not the case
in the results of Tomiyama (1998).

Figure 2.25, 2.26 and 2.27 shows the position of the bubble, the velocity and the drag and
lift coefficient of the bubble in case 3, respectively. Here the shear rate is reduced to a
value of 2 s-1.
The lateral movement of the bubble in case 2 and 3 is in the same direction, both to side
with the highest slip velocity. The lateral movement in case 3 is smaller in the same time.
In case 2 the movement in 3 s is 0.55 m and in case 3 the movement is 0.25, which is in
approximate agreement with the change in shear rate.

Figure 2.28 shows the liquid flow around the bubble in the three cases. Figure 2.29, 2.30
and 2.31 are close-ups of Figure 2.28. In these three figures the change of the bubble
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shape during one cycle of the oscillations in the column can be seen. The time between
two images is 0.03 s.
The liquid is flowing downwards due to the shear rate from the top as is shown in
Figure 2.28. In the neighbourhood of the bubble the liquid is moving from the top of the
bubble to the wake of the bubble, which is the same as in the case without shear field.
During the turn of the bubble the liquid is circulating, as can be seen in the vortices in the
column. In Figure 2.28 right the three vortices can be seen very clearly.

The shape of the bubble changes during the rise and oscillation through the column. The
shape of the bubble with a diameter of 8 mm is approximately ellipsoidal during the
oscillations, as can be seen in Figure 2.29. When the bubble is going from one side to the
other the bubble is rotated to a more vertical ellipsoidal position. During the turn the
ellipsoidal position of the bubble changes 180°, as can be seen when the third and the
seventh image are compared to each other. The shape of the bubble with a diameter of 10
mm is different (see Figure 2.30 and 2.31). During the oscillation the shape of the bubble
is ellipsoidal, but during the turn the shape of the bubble is wobbling (first image). In
Figure 2.30 the bubble starts turning in the last image. In the case with a smaller shear
rate the oscillation is smaller. In Figure 3.31 the first and last image are almost the same.
In both images the bubble is turning.
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Figure 2.19: x- and y-position of the bubble for case 1 (see Table 2.2).

Figure 2.20: Horizontal and vertical slip velocity of the bubble for case 1 (see Table 2.2).

Figure 2.21: Drag and lift coefficient of the bubble for case 1 (see Table 2.2).
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Figure 2.22: x- and y-position of the bubble for case 2 (see Table 2.2).

Figure 2.23: Horizontal and vertical slip velocity of the bubble for case 2 (see Table 2.2).

Figure 2.24: Drag and lift coefficient of the bubble for case 2 (see Table 2.2).
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Figure 2.25: x- and y-position of the bubble for case 3 (see Table 2.2).

Figure 2.26: Horizontal and vertical slip velocity of the bubble for case 3 (see Table 2.2).

Figure 2.27: Drag and lift coefficient of the bubble for case 3 (see Table 2.2).
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Figure 2.28: Liquid flow around a bubble in a shear field. Left: dB = 8 mm, shear field = 5 s-1;
middle: dB = 10 mm, shear field = 5 s-1; Right: dB = 10 mm, shear field = 2 s-1.

2.10 Conclusions

The 2D volume of fluid (VOF) model and 2D and 3D front tracking model have been
used to study the time-dependent behaviour of large bubbles rising in an initially
quiescent liquid in a fundamental way. Both models solve the incompressible Navier-
Stokes equation on a staggered Cartesian mesh using a one-fluid formulation to obtain
the gas and liquid flow fields. The Youngs’ VOF method reconstructs the gas-liquid
interface from the local liquid fraction and the interface is ‘tracked’ through the Eulerian
mesh. The calculation of the surface tension force is based on a model, which was
adapted from the front tracking technique instead of the frequently used continuum
surface force model.
The front tracking method uses an unstructured dynamic mesh to represent the interface
surface and tracks this interface explicitly by the interconnected marker points.

With these models the forces acting on a bubble, i.e. the drag, lift and virtual mass forces
have been calculated by using a force balance for a single bubble. The results are
compared to relations from literature.
The drag coefficients for small bubble diameters (< 2 mm), calculated with 2D VOF
model, are very close to the relations of Tomiyama (1998) and Ishii and Zuber (1979).



Volume of fluid and front tracking model

67

For larger bubble diameters (> 2 mm) the drag coefficients are very close to the relation
of Grace et al. (1976). The drag coefficients in the 3D front tracking model for bubbles
larger than 7 mm are higher than in the 2D VOF model where the equation for a sphere is
used to calculate the drag coefficient. When the equation for a cylinder is used to
calculated the drag coefficient for the 2D VOF model, the drag coefficients of the 3D
front tracking model and the 2D VOF model are close together.
The virtual mass force can only be calculated for the first part of the simulation when the
bubble accelerates. For the 2D VOF model the virtual mass coefficient is around 1.1
whereas for the 3D front tracking model the virtual mass coefficient is 0.6. These values
of the virtual mass coefficient are in agreement with literature. The deviation from the
theoretical value of spherical bubbles is probably caused by the deformation of the
bubble.

A bubble in a shear field does not rise in a straight line, but oscillates in the horizontal
direction and moves to one side of the column. A bubble with a diameter of 8 mm first
moves to the side with the lowest slip velocity and after some time it moves to the side
with the highest slip velocity. The bubble with a diameter of 10 mm moves to the side
with the lowest slip velocity. When using a lower shear rate, the movement of the bubble
is smaller, which is in agreement with theory. The horizontal velocity shows large
oscillations due to the oscillating movement of the bubble in the column and is oscillating
between a negative to a positive value. Due to the oscillations in horizontal velocity, the
lift coefficient changes accordingly. The average lift coefficient for the bubble of 8 mm is
positive and the lift coefficient for the bubble of 10 mm is negative. The values are higher
than the values in literature (Tomiyama, 1998).
The shape of a bubble of 8 mm is approximately ellipsoidal during the oscillations. The
shape of a bubble of 10 mm changes during the oscillations. The bubble is ellipsoidal and
during the turn the shape changes to wobbling. This is probably the reason for the
differences in the lift coefficient.
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Figure 2.29: Bubble shape for bubble with a diameter of 8 mm in a shear field of 5 s-1.
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Figure 2.30: Bubble shape for bubble with a diameter of 10 mm in a shear field of 5 s-1.



Chapter 2

70

Figure 2.31: Bubble shape for bubble with a diameter of 10 mm in a shear field of 2 s-1.
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Chapter 3

DISCRETE BUBBLE MODEL

Abstract

In this chapter a discrete bubble model (DBM) will be used to investigate the
hydrodynamics, coalescence and break-up occurring in a bubble column. The DBM will
be extended to incorporate models describing the break-up and coalescence along with a
closure model for the turbulence.
Simulation results of the DBM with LES model are compared to experimental PIV results
of Deen (2001). LES influences the velocity and velocity fluctuations in the bubble
column due to an increase of the effective viscosity. The influence of the sub-grid scale
velocity is marginal. The average velocity increases due to bubble induced turbulence.
The theory of break-up and coalescence models is given presented and the models are
implemented into the DBM. The coalescence model of Chesters (1991) and Lee
et al. (1987) showed different results. The number of collisions between two bubbles that
result in coalescence is 43 % with the model of Chesters (1991) and 85 % with the model
of Lee et al. (1987). Coalescence occurs in the lower part of the column. The mean
diameter obtained from the DBM is higher than the experimental mean diameter. The
bubble size distribution is narrower. The energy dissipation in the simulated bubble
column is too low and hardly any break-up occurs.
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3.1 Introduction

In important processes in the chemical industry contact of multiple phases is involved. In
these processes gas-liquid mass transfer takes place with accompanying chemical
reactions. The specific area is very important for the rate of mass transfer and therefore
the bubble size is very important. Processes like break-up and coalescence of bubbles
have an enormous impact on the bubble size distribution and thus on the specific area and
the rate of mass transfer.
Detailed hydrodynamic models can give insight in the hydrodynamics of bubbly flows.
Despite the widespread application of bubble columns and substantial research efforts on
their behaviour, detailed knowledge on break-up and coalescence of bubbles is still
lacking and is not implemented into the hydrodynamic models.

Flows in industrial bubble columns can be simulated using Euler-Euler or Euler-
Lagrange models. The Euler-Euler models treat the different phases as interpenetrating
fluids. The Euler-Lagrange model is the next and more detailed level. This model, also
called the discrete bubble models (DBM), follows each bubble separately. The liquid
phase is described on basis of the volume-averaged Navier-Stokes equations.
In the Euler-Lagrange model each bubble can be followed separately. This can be very
useful for studying the behaviour of the bubbles in case of break-up and coalescence and
collisions between the bubbles. The incorporation of a bubble size distribution in this
model is straightforward. The number of bubbles in the Euler-Lagrange model is limited
to a number of about 105 and it needs a lot of storage requirements and computer power.
With the Euler-Euler model an industrial bubble column can be simulated and the flow
and volume fraction of both phases can be seen in the column. In the Euler-Euler model
the number of bubbles is not limited and storage requirements and demand of computer
power depend only on the number of volume elements considered and not on the number
of bubbles.

Sokolichin et al. (1997) compared the results of the Euler-Euler and the Euler-Lagrange
model. They noticed that the Euler-Euler approach suffers from numerical diffusion. This
is due to the fact, that in the Euler-Euler model the gas fraction is smeared out over the
entire cell, whereas in the Euler-Lagrange model no numerical diffusion will be
introduced into the dispersed phase since each bubble trace can be calculated accurately
within a given volume element. They suggested the use of higher order discretisation
scheme for the Euler-Euler model to reduce the numerical diffusion in this approach.
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When using an appropriate discretisation scheme the Euler-Euler method provides
results, which are in the same order of accuracy as the solution obtained with the Euler-
Lagrange method, which is not affected by numerical diffusion.
Sokolichin and Eigenberger (1999) concluded this once more by comparing the results of
the Euler-Euler model with the results of Delnoij et al. (1997).
Also Lapin and Lübbert (1994) concluded that the Euler-Euler method is very sensitive to
numerical diffusion and Euler-Lagrange methods are much better in this respect.

In many calculations turbulence of the continuous phase was not considered. Only an
effective viscosity was used in order to match calculated results with measurements.
Laín et al. (2001) used the k-ε model to predict the flow in a bubble column. The values
for the mean velocities showed reasonable agreement with PIV experiments for both
phases, the fluctuating components are overpredicted.
Laín et al. (1999) found some problems in prescribing the appropriate drag coefficient.
The bubble rise velocity is considerably under-predicted compared to experimental
results. This effect is the result of a reduced drag in a bubble swarm.

Euler-Lagrange models for bubble columns, also called discrete bubble models, were first
used by Trapp and Mortensen (1993), Lapin and Lübbert (1994) and Devanathan
et al. (1995). The models developed by these authors differ in their description of the
bubble dynamics and in the representation of the coupling between the phases. Lapin and
Lübbert (1994) developed a 2D Euler-Lagrange model of a bubble column using a simple
description of the bubble dynamics. Coupling between the gas and the liquid phases was
achieved through the effective density of the mixture. No exchange of momentum
between the phases was incorporated in their model.
The Euler-Lagrange model needs closure relations to account for phenomena at sub-grid
scale level. This information can be given by e.g. the VOF model and the front tracking
model, as was shown in Chapter 2.

In this study, a 3D DBM model, originally developed by Delnoij (1999) was extended. In
the DBM the encounters between bubbles are taken into account. Therefore this model
can be used very well to study break-up and coalescence of bubbles. In this chapter the
DBM model, developed by Delnoij et al. (1997) will be extended to account for
turbulence effects, break-up and coalescence and state of the art closures for the forces
acting on bubbles will be implemented.
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3.2 Theory of the discrete bubble model

The discrete bubble model consists of two coupled parts: A part describing the bubble
motion and a part describing the liquid phase motion. The model requires constitutive
equations for the forces acting on a bubble. The exchange of momentum between the gas
and the liquid phase and vice versa is incorporated as a source term in the momentum
equation. The interaction between the bubbles is modelled via an encounter model,
including bouncing, break-up and coalescence of bubbles.

3.2.1 Bubble dynamics

With the discrete bubble model the transient behaviour can be simulated. The bubbles are
tracked by solving an equation of motion for each individual bubble. The bubble
dynamics are described by incorporating all relevant forces acting on a bubble rising in a
liquid. The total force Ftot is assumed to be composed of separate and uncoupled
contributions from pressure, gravity, drag, lift and virtual mass (Auton, 1983):

tot P G D L VM= + + + +F F F F F F (3. 1)

The force acting on a bubble due to the gravity and pressure gradient, also called the
buoyancy force, results in a net upward force.
The equation for the buoyancy force is given by:

( )Buoyancy G P g l BVρ ρ= + = −F F F g (3. 2)

It is noted that g points in the negative y-direction.

The relation for the drag force acting on a sphere is given by equation 3.3. The force is
proportional to the relative velocity between the bubble and the fluid (v - u) and acts in
the opposite direction to the path of the bubble. u in this equation is the instantaneous
velocity:

( )21 1
2 4D D l BC dρ π= − − −F v u v u (3. 3)
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Tomiyama (1998) proposed three equations, which correspond to a pure, slightly
contaminated and contaminated system. These equations are based on a balance of forces
acting on a single bubble in an infinite stagnant liquid and on available empirical
correlations of terminal rise velocities of single bubbles and are respectively given by:

( )0.68716 48 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC   = +   +  

(3. 4)

( )0.68724 72 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC   = +   +  

(3. 5)

( )0.68724 8 Eomax 1 0.15Re ,
Re 3 Eo 4DC  = + + 

(3. 6)

In our DBM equation 3.4 for the pure system is used.

The lift force consists of two parts: the classical shear-induced lateral lift force and the
wake induced lift force. Both forces act simultaneously on the bubble.
Auton (1983) derived that the lift force is proportional to the cross product of the slip
velocity and the curl of the liquid velocity. This implies that the lift force is perpendicular
to the path of the bubble.

( )L L l BC Vρ= − − × ΩF v u   (3. 7)

Ω = ∇ ×u

The virtual mass force, also called the added mass force, is especially important in cases
of unsteady rise when a bubble accelerates or decelerates, e.g. near the nozzle or in a
turbulent field. The force can be seen as a resistance to acceleration, as the ‘added mass’
of the liquid also has to be accelerated when the bubble accelerates. According to
Auton (1983) the virtual mass force can be modelled by:

VM
D
Dt

 = − + ⋅∇  
IF I u  (3. 8)

( )VM l BC Vρ= −I v u
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The value of the virtual mass force is considered to be independent of the void fraction
and CVM is taken equal to 0.5 in 3D systems.

For more details about the forces acting on bubbles the reader is referred to Chapter 2.

The acceleration of the bubble can be described by Newton’s second law:

B tot
dm
dt

=v F (3. 9)

The new bubble velocity can be calculated by using an explicit integration formula:

1
t

t t
bub

d dt
dt

+  = +   
vv v (3. 10)

where t and t+1 are the old and new time levels respectively.
Once the new velocity is obtained, the bubble position can be calculated as follows:

1 1t t t
bubdt+ += +x x v (3. 11)

To resolve the time-dependent motion of the gas and liquid phases, the discrete bubble
model uses three different time scales. The biggest time step (dtflow) is employed to solve
the Navier-Stokes equations to obtain the macroscopic liquid flow field induced by the
rising bubbles. The forces acting on a bubble, as described above, are resolved on a
smaller time scale (dtbub). To account for the possible collision between the bubbles and
the displacement of the bubbles an even smaller time step tab is used. During this time
step tab the position of all bubbles in the column changes.

After an encounter of two bubbles in a bubble column the bubbles either coalesce or
bounce. In the DBM model, developed by Delnoij (1999), it was assumed that bubbles
only collide and bounce, so no coalescence could occur. This assumption is valid for
small bubbles. The hard sphere collision model, developed by Hoomans et al. (1996), is
used to describe the collisions between bubbles. The model describes one collision at a
time.
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In the collision model a search area is determined in which the possible collision partners
of the bubble under consideration are located. The collision partner can be another bubble
or a column wall. These collision partners are stored in a so-called ‘neighbour list’.
The next step is to calculate the collision time, tab of the bubble (a) under consideration
with all its possible collision partners (b) in the ‘neighbour list’.
The collision time tab of two bubbles can be calculated using the initial position of the
bubbles and their velocities:

( )( )2 2 22

2

ab ab a b a b a b

ab
a b

b b r r
t

− − − − − − +
=

−

v v r r

v v
(3. 12)

where:

ab ab abb = ⋅r v (3. 13)

When the collision time tab of the bubble with all its possible collision partners is
calculated, the smallest collision time for each bubble is determined. So each bubble has
one most likely collision partner and one collision time. The next step is to determine the
smallest collision time of all bubble pairs in the whole column. The bubble positions of
all bubbles are updated using the smallest collision time and the known bubble velocities:

( ) ( )a ab a a abt t t t+ = +r r v (3. 14)

Two bubbles, with the smallest collision time in the column, collide in the time
interval tab. Their velocity and momentum change due to this collision must be updated.
When the bubbles bounce, the velocities of both bubbles are splitted into a normal and a
tangential component with respect to the line connecting the centres of mass of both
bubbles. The normal component does not change due to a collision between the bubbles a
and b, so the tangential component can be calculated using:

( ) 2 a a b b
aaftercollision

a b

m m
m m

+= −
+

v vv v (3. 15)
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3.2.2 Liquid phase hydrodynamics

The liquid phase hydrodynamics are described using the equations of motion:

( ) 0l l
l lt

α ρ
α ρ

∂
+ ∇ ⋅ =

∂
u (3. 16)

( )l l
l l l l l l lP

t
α ρ

α ρ α α τ α ρ
∂

+ ∇ ⋅ = − ∇ − ∇ ⋅ + + Φ
∂

u
uu g (3. 17)

The influence of the gas phase on the hydrodynamics of the liquid phase is expressed in
two ways. First, the presence of the bubbles alters the liquid volume fraction αl and
second, the interface momentum transfer is represented by the term Φ.

The liquid phase stress tensor τl is assumed to obey the general Newtonian form given by

( ) ( ),
2
3

T
l eff l l l lτ µ  = − ∇ + ∇ − ∇  

u u I u (3. 18)

where µeff,l represents the effective shear viscosity.
The effective viscosity µeff,l in the equation is composed of three different contributions:
The molecular viscosity, the turbulent viscosity and the viscosity due to bubble induced
turbulence:

, , , ,eff l L l T l BIT lµ µ µ µ= + + (3. 19)

There are several models available to take turbulence induced by the movement of the
bubbles into account. In this study the model proposed by Sato and Sekoguchi (1975)
was used:

, ,BIT l l BIT g BC dµµ ρ α= −v u (3. 20)

with a model constant Cµ,BIT which is equal to 0.6.
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To calculate the turbulent viscosity µT,l a SGS model is used. This model represents the
small scale turbulent structures, which are smaller than the grid scale. In the DBM model
the model proposed by Smagorinsky (1963) has been used.

The resulting turbulent viscosity is formulated as follows:

( )2
,T l l SCµ ρ= ∆ S (3. 21)

in which CS is a constant with the value of 0.1, S the characteristic filtered rate of strain
and ∆=(∆x∆y∆z)1/3 the filter width.

In order to incorporate the influence of the SGS liquid velocity on the bubble dynamics,
the following liquid velocity is used in the evaluation of the force balance:

gs sgsu= + ⋅u u I (3. 22)

The sub-grid scale part of the LES model is mimicked by a uniform random, isotropic
process with zero average and RMS value usgs given by:

2
3sgs sgsu k= (3. 23)

This equation is used for the x-, y- and z-velocity directions.

The sub-grid kinetic energy ksgs is calculated according to

( ) 22
sgs k Sk C C= ∆ S (3. 24)

with Ck a constant with the value of 5 (Mason and Callen, 1986).

By combining equations 3.21, 3.23 and 3.24 the following expression for the sub-grid
scale velocity is obtained:

( )
, 2

3
T l

sgs k
S l

u C
C

µ
ρ

=
∆

(3. 25)
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3.2.3 Grid mapping

For the calculation of the coupling terms αl and Φ a so called Euler-Lagrange mapping
technique is required. This mapping consists of bubble volume fraction mapping, Euler to
Lagrange mapping and Lagrange to Euler mapping.
The mapping technique used by several authors (Delnoij, 1999 and Tomiyama
et al., 1997) cannot handle bubbles, which are bigger than the Eulerian cell. The size of
the bubbles in the DBM is changing due to coalescence and break-up and therefore in the
DBM a mapping technique is used, which can handle bubbles, which are smaller as well
as larger than the Eulerian grid cell.

The gas volume fraction αg of a computational cell is calculated from the volume
occupied by the bubbles present in the cell under consideration and the volume of the cell
itself:

1 q q
g cell B

q cellcell

V
V

α ζ
∀ ∈

= ∑ (3. 26)

where ζq
cell is the volume fraction of the qth bubble in the cell (see Figure 3.1)

 The liquid volume fraction is then easily calculated as:

1l gα α= − (3. 27)

Equation 3.26 requires a value of ζq
cell, which is strongly dependent of the bubble shapes.

The bubble shape depends on various parameters, e.g. fluid properties, bubble volume,
gravity and the time-dependent flow field around the bubble, so the prediction of the
shape is quite difficult. Even for simple shapes such as spherical or ellipsoidal, the
calculation of ζq

cell requires significant computational effort especially if the size of the
bubble is larger than the size of the computational grid cell (Darmana, 2004). According
to Tomiyama et al. (1997) a cubic shape can be used to represent the bubble for two
reasons: (1) the calculation of ζq

cell is easy and takes little CPU time; (2) since the actual
bubbles take time-dependent complex shapes, there may be little difference between the
cubic approximation and other more sophisticated approximations such as spherical and
ellipsoidal shapes.
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Figure 3.1: Porosity mapping.

Special treatment should be given to cells that are entirely occupied by the bubble, since
this breaks the basic assumption of continuum liquid for the liquid phase. To overcome
this problem the liquid phase porosity in such a case is set to a minimum value αl = αlow.
The value of αlow influences the accuracy as well as the computational cost to solve the
problem. Here αlow = 5% is used.

The momentum transfer rate of the bubbles to the liquid per unit volume Φ, is the
opposite of the momentum transfer rate due to drag, lift and virtual mass exerted by the
liquid on the bubble in the computational cell. It can be calculated from:

( ), , ,
q

D q VM q L q cell
q cell

ς
∀ ∈

Φ = − + +∑ F F F (3. 28)

To calculate the momentum transfer from the liquid to the bubble (the forces acting on
bubbles), all local values of the liquid properties (i.e. pressure and velocity) have to be
available at the centre of mass position of the bubble. The closures for the forces acting
on bubbles are derived using the far field or undisturbed flow. The Eulerian quantity is
not taken at the same place as the mapping region of the bubble but one cell outward
(Figure 3.2). In this region the Eulerian quantity is expected to be numerically less
disturbed than in the mapping region. Thus under these conditions the bubble experiences
the undisturbed liquid flow field as used in the derivation of the closures of the forces.

ζcellVB
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Figure 3.2: Eulerian grid at bubble position.

3.3 Coalescence

In literature many models, which describe coalescence, can be found. Usually the
coalescence process is modelled with the coalescence frequency Q. This function is often
written as the product of the collision frequency θ and the coalescence efficiency λ:

( ) ( ) ( ), , ,a b a b a bQ d d d d d dθ λ= (3. 29)

where da and db are the diameters of the bubbles considered in the coalescence process.

The coalescence efficiency λ(da,db) is the probability that coalescence occurs between
two bubbles with diameter da and db once collision has occurred. Thus, the efficiency can
be described as the fraction of bubbles, which coalesce after collision. The coalescence
efficiency is a function of the coalescence time and the contact time, which will be
described in the subsequent sections.

The collision frequency θ(da,db) is determined by the DBM, because this model accounts
for the collisions between bubbles.

undisturbed cell

disturbed cell
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3.3.1 Coalescence time

Two main approaches for the coalescence efficiency can be distinguished: One assuming
instantaneous coalescence after collision and one involving a drainage process.
In the first process coalescence is assumed to be governed by the impact of the collision
of the bubbles: Kinetic collision (Sovová, 1981). The latter type, which includes a
drainage process, is most often considered. In this case coalescence can be seen as a
three-step process:

1. Collision: Approach of two bubbles to within a distance of 10-100 µm;
2. Drainage: Further thinning of the liquid layer between the bubbles to the so-called

critical film thickness;
3. Rupture: Rupture of the thin liquid layer via an instability mechanism which leads to

the actual coalescence of the bubbles

The first two steps are rate controlling.

1. Collision
In general only the collision between two bubbles is considered. The turbulent inertial
forces are assumed to cause collision. The correct mechanism of the collision is not
known explicitly, because no general expression for the trajectory of a bubble in a
turbulent flow field exists.

2. Drainage
After collision of the bubbles drainage of the intervening liquid film between the bubbles
may take place if a compressive net force on a bubble pair exists. Usually a
hydrodynamic force is considered, but also models regarding intermolecular interactions,
presence of surfactants or influence of electrical effects have been developed. The
coalescence process generally considered in literature for turbulent dispersions is that
bubbles, embedded in eddies of inertial range, experience a squeezing force for a finite
time (Kumar et al., 1993). The acting force is described by the turbulent dynamic
pressure, which fluctuates randomly in time. Therefore the film-drainage process can be
interrupted any time. The longer the drainage takes the greater the probability of
interruption. Before rupture can occur the film has to be thinned to a certain thickness.
Several models for this thinning process under influence of a compressive force have
been proposed. This thinning process depends on several factors, such as the shape of the
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bubble and the flow regime of the drainage flow. Most thinning mechanisms are based on
the ‘parallel disc model’: the surfaces of the coalescing bubbles are modeled at the
‘contact side’ initially as two parallel plates.
The thinning process may be either inertial or viscous. When inertial forces are
predominant, which will be the case for low viscosity turbulent systems, the thinning
process is called inertial. In this case the film surface is completely immobile. If only
inertial terms are considered, the Bernoulli equation can be used to obtain a thinning rate
equation. The inertial thinning time required for removing all liquid from the film
between two equally sized bubbles is (Sagert and Quinn, 1976):

1
2

ln
4
d l B i

d
f

r r ht
h

ρ
σ

  =        
(3. 30)

In this equation hi is the initial thickness of the film in air-water systems is given by
Kirkpatrick and Locket (1974) to be 10-4 m. The final film thickness hf is typically taken
as 10-8 m, where rd is the radius of the liquid film disc.

For the case of bubbles of unequal size, rB and rd in the former equation should be
replaced by the equivalent radius (rab). The equivalent radius is given by Chesters and
Hoffman (1982) as:

1
1 12ab
a b

r
r r

−
 

= + 
 

(3. 31)

3. Rupture
If the bubbles remain in contact after collision for sufficient time, the drainage will lead
to rupture and coalescence. When the film has become sufficiently thin, the effects of
Van der Waals forces and electrostatic double layer forces become significant (Li, 1994).
These forces can either enhance or retard drainage. Also the Hamaker force may be
considered, which represents the mutual attraction of molecules on opposite sides of the
liquid film. Usually the time for rupture is much smaller than the drainage time (time of
rupture is about 5% the time of drainage). Therefore there is no need to consider rupture
to estimate the time of the coalescence process (Prince and Blanch, 1990). However
impurities which act as surface-active agents may increase the time of rupture to the time
scale of the drainage process (Lee et al., 1987).
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The rupture of a free liquid film has been studied by Ruckenstein and Jain (1974) using
hydrodynamic stability theory. They have established a kind of wave motion equation,
which allows one to calculate the critical wavelength of the perturbations and the time of
rupture. Their result for a pure liquid is given by:

3 16r l f ht h Aπµ −≈ (3. 32)

where Ah is the Hamacker constant which range between 10-20 and 10-19 joules.

This equation is the lower bound of the time in real systems of the breaking time for a
liquid film.

In presence of surface-active impurities the time of rupture depends strongly on the
surface concentration of surfactants and can be several orders of magnitude longer than
for a pure liquid. Ruckenstein and Jain (1974) have derived an expression for the upper
bound of the time of rupture in the system where the surface-active agent is present. The
result is given by:

2 5 296r l f ht h Aπ σµ −≈ (3. 33)

Since the breakage time for a liquid film increases with the concentration of the
surfactant, Lee et al. (1987) proposed a general expression for the breakage time of the
liquid film in a real system:

5 2( )r l f ht kf M h Aσµ −= (3. 34)

The simplest representation for f(M) is M, where M is the surface immobility parameter,
which usually takes the value 0,1 or 4 depending on whether there are 0, 1 or 2 immobile
interfaces, respectively. When there is a surfactant present, M can take any value between
0 and 4, and it does not need to be an integer. In general, its value is determined
empirically in order to account for the experimental coalescence time. However, it is
expected that M will increase with the concentration of the surfactant since high
surfactant concentration will definitely increase the immobility of the interfaces and
therefore increase the film thinning time.
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When replacing f(M) for M this equation can be written as:

2 5 224r l f ht M h A−= π σµ (3. 35)

3.3.2 Contact time

The contact time τc is the time two bubbles actually stay together and can be estimated by
assuming it is proportional to the characteristic period of velocity fluctuations of an eddy
of size di+dj. From Levich (1962) it can be shown that the average contact time is:

( )2
3

1
31

a b
c

d d
Cτ

ε
+

= (3. 36)

where C1 is a constant with the value 1 and ε is the energy dissipation.

3.3.3 Coalescence efficiency

In the two preceding sections relations for the coalescence time and the contact time were
given. Coalescence will take place if the contact time exceeds the coalescence time
(τc > tc).
Ross and Curl (1973) derived an expression for the coalescence efficiency of a particular
collision:

c

c

texp
 

= − 
 

λ
τ

(3. 37)

where τc is the contact time between two bubbles and tc is the coalescence time, the time
required for coalescence upon collision.
Ross and Curl (1973) assumed that both the contact time and coalescence time are
random variables and the contact time is normally distributed.
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Most authors consider the coalescence time tc as the time required for drainage. Lee
et al. (1987) considered the coalescence time, as the time required for thinning plus the
time of rupture:

( )

1
2

2
3

1
3

2 5 2ln 24
4
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ab l ab i
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a b
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d d
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λ
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−
    +        = − + 
  

(3. 38)

Chesters (1991) used the following equation for the coalescence time (drainage time) of
two bubbles:

20.5 l rel
c

v rt ≈ ρ
σ

(3. 39)

The collision time according to Chesters (1991) is:
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(3. 40)

When assuming ρl >> ρg:

1
2

c

c

t We=
τ

(3. 41)

The resulting coalescence efficiency is a function of the Weber number:

2

2
Cexp Weλ  = −  

(3. 42)

where C2 is a constant of order unity.
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For high Weber number collisions, the chance of coalescence is small as the bubbles tend
to bounce. Only equal sized collisions were considered by Chesters (1991), for he
asserted that the equations governing axi-symmetrical film drainage between two unequal
bubbles are the same as those for equal bubbles that have a so-called equivalent diameter.

3.4 Break-up

Walter and Blanch (1986) postulated that the turbulent break-up process in a bubble
consists of three stages:

1. oscillation of the bubble surface and rippling due to fluctuating pressure forces
2. stretching into the shape of a dumb-bell with two large centers of mass connected by

a thin fluid neck
3. two independent bubbles are formed when the neck is pinched off.

The deformation of a bubble due to turbulent fluctuations is three-dimensional. As there
seems to be no clear picture of the three-dimensional turbulent flow field in the vicinity
of a bubble, only one-dimensional models have been developed in literature.
For breakage two conditions should be fulfilled:

1. the dispersive forces should exceed the stabilizing forces
2. the energy input should be large enough to provide the increase of surface energy; the

time duration of the interaction should be long enough to communicate the required
energy

Bubble break-up occurs through bubble interaction with turbulent eddies. The eddies
responsible for break-up are equal to or marginally smaller than the bubble size. Larger
eddies simply transport the bubble without causing break-up, while very small eddies do
not contain sufficient energy to affect breakage.

In the DBM the break-up model reported by Luo and Svendsen (1996) is implemented.
They did not make any distinction between drops and bubbles in the derivation of their
theoretical model. The turbulence in this model is assumed to be isotropic. For bubble
columns, the turbulence is non-isotropic (Menzel, 1990). Nevertheless, the isotropic
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turbulence assumption has often been used also for these systems (Lee et al., 1987a;
Prince and Blanch, 1990).
The model of Luo and Svendsen (1996) contains no unknown or adjustable parameters.
Their equation for the total breakage rate of a bubble with volume V is:

( ) ( )
1

0

1
2 BV BVg V V :Vf dfΩ= ∫ (3. 43)

where Ω(V:VfBV)df is the breakage rate of bubbles of volume V into two bubbles, one
with volume VfBV and one with the complementary volume. The factor 0.5 has to be
added because Ω(V:VfBV) and Ω(V:V(1-fBV)) refer to the same event. Analogous to the
coalescence frequency the rate function Ω has been defined as a function of the eddy-
bubble collision 

e
(V )λϖ&  and the break-up probability (efficiency) PBU:

( ) ( ) ( )
b

e

min

d

BV BU BV e eV :Vf P V :Vf , V dλ
λ

Ω λ ϖ λ= ∫ & (3. 44)

where PBU(V:VfBV,λe) is the probability for a bubble of volume V to break into two
bubbles, one with volume VfBV and one with volume V(1-fBV), when the bubble is hit by
an eddy of size λe; e

(V )λϖ&  is the arrival frequency of eddies of size between λe and

λe+dλe on bubbles of volume V. λmin is the minimum size of eddies in the inertial range.

3.4.1 Arrival frequency

The arrival frequency of eddies with a given size λe on the surface of bubbles with
size db, is equivalent to the collision frequency between the same eddies and the bubbles.
The motion of eddies is considered random and the collision frequency of eddies of a size
between λe and λe+dλe with bubbles of size d can be expressed by:

( ) ( )2

4e e eB B e Bd d n nλ λ λ
πϖ λ= + u& & (3. 45)
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where 
e

nλ&  is the number of eddies of size between λe and λe+dλe per unit reactor volume,

nB is the number of bubbles per unit dispersed phase and 
eλu  is the turbulent velocity of

eddies of size λe. The mean turbulent velocity of eddies with size λe in the inertial sub-
range of isotropic turbulence can be expressed by (Kuboi et al., 1972).

( ) ( )
11

22
1 112 32

28 8
3 3eλ

β ελ β ελ
π π

  
= = =  

   

uu
%

(3. 46)

where the constant 3 5 1 3 c( / ) ( / )β Γ α=% . Γ is the gamma function and αc is a universal

constant, as given by Batchelor (1982), based on turbulence energy. β%  becomes

about 2.41 when α is 1.5 (Tennekes and Lumley, 1972). The measured value of β%  is 2.0

(Kuboi et al., 1972).
The energy spectrum E(k) gives the kinetic energy per unit mass contained in eddies of
wave number between k and k+dk, or equivalently of size between λe and λe+dλe

(Tennekes and Lumley, 1972). When this is known, a relationship between 
e

nλ&  and E(k)

can be obtained as follows:

( ) ( )( )
2

3 1
6 2

e

e l e e l gn d E k dkλ
λ

πρ λ λ ρ α= − −
u

& (3. 47)

where αg is the local fraction of gas phase.
The functional form of the energy spectrum for the whole range of isotropic turbulence is
not available, but in the inertial sub-range it is well described (Tennekes and
Lumley, 1972) by:

3
5

3
2)( −= kkE αε (3. 48)

The relationship between the wave number and the size of an eddy is k=2π/λe (Tennekes
and Lumley, 1972). Therefore, the number of eddies of size between λe and λe+dλe per
unit reactor volume, or the number density of eddies is:
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( )3
4

1
e

g

e

C
nλ

α
λ
−

=& (3. 49)

where

( ) ( ) ( )2 2
3 33 1

3

9 15 0 822
2 2 2 2

C .α
π β π Γ

= = ≈
%

(3. 50)

Equation 3.49 indicates that smaller eddies have higher number densities. However, the
equation is only valid for eddies in the inertial sub-range of isotropic turbulence because
the used turbulent energy spectrum function and the turbulent velocity are only valid in
this range. This limitation will probably have an insignificant effect on the eddy
bombarding consideration, since the very small eddies have very low energy contents and
very short lifetimes.

The bombarding frequency of the eddies with size between λe and λe+dλe can be
expressed as:

( ) 1
3

11
3

2

4 2

(1 )( ) (1 ) ( )
e

b g B B
B

d C n d
d

ξλ

ξϖ ϖ ξ α ε
ξ

+= = −& & (3. 51)

where ξ=λe/db is the size ratio between an eddy and a bubble and

1
2

3
4 0.923

4
CC πβ= ≈ (3. 52)

3.4.2 Probability function

The time scale of bubble oscillation is assumed to be smaller than that associated with the
eddy bombardment. This implies that once an eddy of sufficiently high energy arrives,
this leads to bubble breakage.
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Then the condition for an oscillating deformed bubble to break is that the kinetic energy
of the bombarding eddy of size λε (e(λε)) exceeds the increase in surface energy required
for bubble breakage ( ( ))i ee λ :

( ) ( ) 2
e i B f Be e d c dλ π σ≥ = (3. 53)

where cf is defined as the increase coefficient of the surface area:

( )22 33 1 1f BV BVc f f= + − − (3. 54)

The increase in surface energy is a function of the sizes of the new bubbles.
fBV  is the volume ratio of the newly created bubble, with 0 ≤ fBV ≤ 1 and cf in
equation 3.54 is symmetrically around fBV = 0.5.

This increase in surface energy is determined by the number and the sizes of the daughter
bubbles formed in the breakage process.

The probability function PBU(V:VfBV,λe) for a bubble of size V breaking into a bubble of
size V1 = VfBV and a bubble of size V2 (=V-V1) is then given by:

( ) ( ) ( )
0

1
c

BU BV e cP V :Vf , exp d exp
χ

λ χ χ χ= − − = −∫ (3. 55)

where χ is the dimensionless energy ( ( ) / ( ))e ee eλ λ and χc is the critical dimensionless

energy for break-up given by:

( )
( )

i B
c

e

e d
e

χ
λ

= (3. 56)

A distribution function of the kinetic energy for eddies in turbulence is required to
determine the energy contained in eddies of different scales. Lee et al. (1987) used
Maxwell’s law for this function. However, Maxwell’s law is especially for free-gas
molecular motion and may not be suitable for turbulent eddies. Angelidou et al. (1979)
have developed an energy-distribution density function for fluid particles in liquids,
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which satisfies a natural exponential function. Actually for the kinetic energy of turbulent
eddies, this exponential-energy density function is found to be equivalent to the common
assumption that the velocity distribution of turbulent eddies is a normal density function
(Saffman and Turner, 1956; Coulaloglou and Tavlarides (1977); Narsimhan
et al. (1979)). This assumption of a normal velocity distribution is also supported by the
experimental results of Kuboi et al. (1972) for a turbulent liquid-liquid dispersion system.

Hence, this distribution function is also used by Luo and Svendsen (1996) to describe the
kinetic energy distribution of the eddies in turbulence:

( ) ( ) ( )1
e

e

p exp
e

χ χ
λ

= − ;        ( )
( )

e

e

e
e

λ
χ

λ
= (3. 57)

The mean kinetic energy of an eddy with size λe, ( )ee λ , is given by:

( ) ( )2 113 3

2
3 3

6 2 12
e

e l e B Be d dλπ πβλ ρ λ ε ξ= =
u

(3. 58)

When a bubble of size V breaks into two bubbles the increase in surface energy is:

( ) ( )22 33 2 21 1i B BV BV B f Be d f f d c dπ σ π σ = + − − =  (3. 59)

The choice of daughter particle size distribution has usually been more or less arbitrary
by different authors. Most of the functions used, except the uniform distribution, have the
same characteristics: equal size breakage has the highest probability and the breakage
percentage decreases when V1 ↓ 0 or V1 ↑ V. Nambiar et al. (1992) have pointed out that
these models may not be representative of the underlying physical situation. This is
physically correct, because more energy is required for binary equal-sized breakage then
for binary unequal-sized breakage. The experimental results of Hesketh et al. (1991a)
have also shown that equal-sized breakage has the lowest breakage probability, while the
highest breakage probability occurs when V1 ↓ 0 or V1 ↑ V. Luo and Svendsen (1996)
assumed a U-shaped function of the dimensionless daughter size distribution and the
lowest breakage probability (which is non-zero) is found for equal-sized breakage for any
given original particle size (see Figure 3.3).
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To include this phenomenon in the breakage model in the DBM  is a continuous function
for fBV  is used, given by:

( )10 0.5
0.5 0.5 tanh random

BV

x
f

π
⋅ − 

= +  
 

;         0 < xrandom < 1 (3. 60)

where xrandom
 is determined using the standard random function in C.

Figure 3.3: Effect of bubble size and energy dissipation rate per unit mass on the dimensionless daughter
bubble-size distribution for an air-water system (Luo and Svendsen, 1996).

Substituting equations 3.58 and 3.59 in equation 3.56 gives the following equation for the
critical dimensionless energy for break-up:

52 11
3 3 3

12( )
( )

fi B
c

B l B

ce d
e d d

σ
χ

βρ ε ξ
= = (3. 61)

Substituting equations 3.51 and 3.55 into equation 3.44 the breakup rate of a bubble with
volume V into bubble volumes of VfBV and V(1-fBV) can be obtained as
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C exp d

dn dξ

σΩ ξε ξ
α ξ βρ ε ξ

 + 
= −  −    

∫ (3. 62)

where ξmin = λmin/dB.
In the preceding integral the micro-scale of eddies, λms, should actually be used as the
lower limit, but it has been replaced by the minimum size of eddies in the inertial sub-
range of isotropic turbulence λmin:

11 4min ms.λ λ= (3. 63)

0 253 .

l

l
ms

µ
ρ

λ
ε

    
  =  
 
  

(3. 64)

The reason for this replacement is that the expression for bombarding frequency of eddies
and breakage probability developed earlier are only valid for the inertial sub-range. This
change is acceptable since the very small eddies have very low energy contents and very
short lifetimes and therefore they have a negligible effect on the breakage of bubbles.

In Table 3.1 an overview of the equations for coalescence and break-up, incorporated in
the DBM is given.

Table 3.1: Overview of the equations for coalescence and break-up, incorporated in the DBM

model number equation
coalescence Chesters (1991) 3.42

Lee et al. (1987) 3.38
break-up Luo and Svendsen (1996) 3.62
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3.5 Boundary conditions and numerical method

During the initialisation step of the simulation the pressure is set to the hydrostatic
pressure in a quiescent liquid without bubbles. The boundary conditions required to solve
the system are incorporated using the flag matrix concept (Kuipers et al., 1993). With this
concept the boundary conditions can be set for each individual computational cell. At all
the boundaries of the computational domain, except the top, no slip conditions were
applied. For the top the free-slip boundary condition is used. At one grid cell from the top
the column contains slids with predescribed pressure cells at all sides of the column.
These slids occupy 1/3 of the top row of the column (see Figure 3.4).

Table 3.2: Cell flags and corresponding cell types used in defining boundary conditions.

flag boundary condition
1 interior cell, no boundary condition specified
2 impermeable wall, free-slip boundary
3 impermeable wall, no-slip boundary
4 fluid phase influx cell, normal velocity has to be

specified
5 prescribed pressure cell, free-slip boundary
6 continuous outflow cell, free-slip boundary
7 corner cell, no boundary condition specified

In Figure 3.5 a computational flow diagram of the DBM is shown. After entering the
main loop the forces acting on the bubbles present in the computational domain are
computed and the bubbles are moved according to the Newtonian laws of motion. The
encounter model is used to avoid bubbles to have overlap. Bubbles can bounce of
coalesce, depending on the actual local conditions (radius of the bubble, approach
velocity). When the bubbles are in a strong turbulent field, the bubbles can break.
Bubbles leave the computational domain if they hit the top of the domain.
From the position of the bubbles the local liquid fractions are calculated. As described
previously the two-way coupling is achieved by the liquid volume fraction αl and the
interface momentum transfer, represented by the term Φ. This last term is splitted in two
parts: a velocity-dependent and a velocity-independent part. The velocity-independent
part is taken explicitly, the velocity-dependent part of the velocity is computed implicitly.
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The Navier-Stokes equations are discretised on a staggered Eulerian grid. The incomplete
Choleski conjugate gradient (ICCG) method is used to solve the pressure-Poisson
equation.

Figure 3.4: Grid lay-out in a simulation with the DBM. The cell flags are explained in Table 3.2. Left:
cross-section; right: wall.

For the discretisation of the convection term of the Navier-Stokes equation the second
order accurate Barton scheme (Centrella and Wilson, 1984; Hawley et al., 1984;
Goldschmidt, 2001) is used.
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Figure 3.5: Computational flow diagram of the DBM.

3.6 Results grid size, time step and turbulence

The gas-liquid flow in a bubble column is modelled with the DBM as described in the
previous sections. In this section the results of the simulations are discussed. First the grid
and time step dependence of the model are checked. Next the results of the DBM with
and without the LES turbulence model and sub-grid scale velocity are discussed. The
different computational cases are listed in Table 3.3.

A standard case (case 0) is used as starting point for the simulations. The results of this
standard case are compared to experimental PIV results measured by Deen (2001). The
bubble column used by Deen (2001) had a square cross section of 0.15 x 0.15 m2 and a

initialisation

if t < tend

move bubbles,
coalescence, break-up or bounce

calculate αg

finalisation

yes

no

solve forces acting on bubbles

solve Navier-Stokes equations
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height of 1 m. The column was filled with distilled water upto an initial liquid height
of 0.45 m. Air was introduced into the column through a perforated plate. The plate
contained 49 holes, with a diameter of 1 mm, which were positioned in the middle of the
column at a square pitch of 6.25 mm. The superficial gas velocity was 4.9 mm/s,
corresponding to a gas flow rate of 2.25.10-6 m3 s-1 per hole.

The simulated bubble column had the same dimensions as the column in the experimental
PIV set-up. The perforated plate in the simulated column was also the same as for the
experimental set-up. The initial bubble diameter was set to a constant value of 4.0 mm.
The grid of the computational domain consisted of 15 x 15 x 45 grid cells and the time
step was 1.0.10-3 s.
In the standard case the LES turbulence model (turbulence viscosity µT,l) and the sub-grid
scale velocity are implemented.

Each case was simulated for 180 s and the time-averaged mean velocity and the velocity
fluctuations were calculated starting from 20 s.

The time-averaged mean velocity is calculated as:

1

1 tN

t

u u
N =

= ∑ h
h

(3. 65)

where Nt is the number of time steps used in the averaging.
The large scale velocity fluctuations resolved by the model are calculated as follows:

( )2

1

1'
tN

t

u u u
N =

= −∑ h
h

(3. 66)
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Table 3.3: Overview of different simulation cases for hydrodynamics.

Case ∆x∆y∆z [mm] ∆t [ms] µT,l µBIT,l usgs

0 10 1.0 Eq. 3.21 0 Eq. 3.23
1 10 0.5 Eq. 3.21 0 Eq. 3.23
2 5 1.0 Eq. 3.21 0 Eq. 3.23
3 10 1.0 Eq. 3.21 0 0
4 10 1.0 0 0 0
5 10 1.0 Eq. 3.21 Eq. 3.20 Eq. 3.23

3.6.1 Grid size and time step

In Figure 3.6, 3.7, 3.8 and 3.9 snapshots of the bubble positions and the liquid phase
velocity are displayed for case 0, 1, 2 and 5, respectively. It is found that the flow is
driven by a bubble plume, which moves through the column in an oscillatory manner,
which is in agreement with experimental observations by Deen (2001). The snapshots of
the four cases are about the same. The difference between these cases can be seen in the
next section.

Figure 3.6: Snapshots of the bubble position and the liquid phase velocity after 70 s for the standard case
(case 0, see Table 3.3).
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Figure 3.7: Snapshots of the bubble position and the liquid phase velocity after 70 s in the case of a smaller
time step (case 1, see Table 3.3).

Figure 3.8: Snapshots of the bubble position and the liquid phase velocity after 70 s in the case of a smaller
grid (case 2, see Table 3.3).
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Figure 3.9: Snapshots of the bubble position and the liquid phase velocity after 70 s in the without LES
(case 5, see Table 3.3).

Figure 3.10 shows the results of the average liquid velocity at different times, compared
to the PIV results. The average velocity is stable after 130 s. The simulated average
velocity is higher than the PIV results. In Figure 3.11 the average gas velocity is
compared to PIV results. In this figure it can be seen, that also the simulated average gas
velocity is higher than the PIV results.
The vertical and horizontal liquid velocity fluctuations of the simulations are shown in
Figure 3.12. The vertical fluctuations are of the same order of magnitude compared to the
PIV results. The velocity fluctuations, measured with PIV, show a local minimum in the
middle, which is not seen in the simulation results. The horizontal fluctuations are lower
compared to the PIV results, which indicates an underprediction of the horizontal plume
dynamics.
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Figure 3.10: Comparison of the simulated and experimental average liquid velocity profiles for the standard
case (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the averaging period.

Figure 3.11: Comparison of the simulated and experimental average gas velocity profiles for the standard
case (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m.

In Figure 3.13 the average liquid phase velocity profiles and the liquid phase velocity
fluctuations for a smaller time step (case 1) are compared to the standard case. The
difference between the standard case and the case with the smaller time step is
about 25 %. The difference may be attributed to small differences in the pertaining
dynamics. The difference between the simulation results with smaller time step and the
PIV results is marginal.
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Figure 3.12: Comparison of the simulated and experimental average liquid velocity fluctuations for the
standard case (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m.

Figure 3.14 shows the average velocity profiles and the velocity fluctuations results of the
liquid phase for a smaller grid size (case 2) compared to the standard case. The difference
of the average velocity between the standard case and the case with the smaller grid is
about 25 %. The difference between the average liquid velocity profiles of the simulation
results with smaller grid size and the PIV results is marginal. The velocity fluctuations of
the standard case and the case with smaller time step are about the same.
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Figure 3.13: Comparison of the simulated and experimental average liquid velocity and velocity
fluctuations for case 0 and 1 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the
time step.
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Figure 3.14: Comparison of the simulated and experimental average liquid velocity and velocity
fluctuations for case 0 and 2 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the
grid size.

3.6.2 Turbulence

In case 3 the influence of the sub-grid scale velocity is investigated. The simulation
results of the standard case are compared to simulation results of the case without sub-
grid scale velocity.

In Figure 3.15 the results of the simulated profiles of the average velocities and velocity
fluctuations are shown. The differences between the cases with and without sub-grid
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scale velocity are marginal, about 8 %. Apparently the unresolved part of the liquid
velocity can be neglected as compared to the resolved grid scale liquid velocity.

Figure 3.15: Comparison of the simulated and experimental average liquid velocity and velocity
fluctuations for case 0 and 3 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the
sub-grid scale velocity.

In case 4 the simulation results of the average velocity profiles and the velocity
fluctuations of the case with LES are compared to the case without LES. As can be seen
in Figure 3.16 the average velocity profiles of the case with LES are much higher than in
the case without LES. When a turbulence model is incorporated, the effective viscosity is
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to less dampening of the bubble plume dynamics. This in turn leads to flatter average
liquid velocity profiles. It appears that the vertical velocity fluctuations are less
influenced by the choice of the turbulence model. The horizontal velocity fluctuations are
higher in the case without LES, which indicates less underprediction of the horizontal
plume dynamics.

In case 5 the influence of the bubble induced turbulence is investigated. The simulation
results of the average velocity profile and the velocity fluctuations of the standard case
are compared to the simulation results of the case with bubble induced. As can be seen in
Figure 3.17, the average velocity profiles in the case with bubble induced turbulence are
higher than in the case without bubble induced turbulence. The difference is about 10 %.
When the bubble induced turbulence is incorporated, the effective viscosity is higher than
without bubble induced turbulence. This leads to more dampening of the bubble plume
dynamics and to a higher maximum of the average liquid velocity profiles. As a
consequence the velocity fluctuations for the horizontal and the vertical direction are
lower when bubble induced turbulence is incorporated.

3.6.3 Lift coefficient

The value of the lift coefficient in the standard case is 0.5. To study the influence of the
lift coefficient this value is reduced to 0.3, which is the value suggested by Tomiyama
(1998). In Figure 3.18 the results of the average velocity profile and the velocity
fluctuations can be seen. It is found that the average velocity profiles in the case of
CL=0.3 are much higher than in the case of CL=0.5. In the case of CL=0.3, the spreading
of the plume is less and therefore the dynamics of the plume are reduced, which leads to a
higher average velocity in the centre of the column. This observation can also be
confirmed by the velocity fluctuations. The velocity fluctuations in the vertical direction
in the case with CL=0.3 are higher than in the case with CL=0.5. The velocity fluctuations
in the horizontal direction are lower in the case with CL = 0.3. The observed behaviour is
in agreement with the findings of Deen et al. (2001), who showed that a lift coefficient of
zero leads to a significant overprediction of the liquid velocities in the centre of the
column.
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Figure 3.16: Comparison of the simulated and experimental liquid velocity and velocity fluctuations for
case 0 and 4 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the LES model.
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Figure 3.17: Comparison of the simulated and experimental liquid velocity and velocity fluctuations for
case 0 and 5 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the bubble induced
turbulence.
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Figure 3.18: Comparison of the simulated and experimental liquid velocity and velocity fluctuations for
case 0 and 5 (see Table 3.3) at a height of 0.255 m and a depth of 0.075 m: Effect of the lift coefficient.
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3.7 Results break-up and coalescence

3.7.1 Break-up

For the break-up of bubbles the energy dissipation is an important parameter. The break-
up model of Luo and Svendsen (1996) and others were developed for ε > 0.5 m2 s-3. In
bubble columns with low gas flows and low turbulence the energy dissipation is in the
order of 10-2. This was also observed in simulations where the model of Luo and
Svendsen (1996) was implemented. When this energy dissipation rates are used in the
break-up model, hardly any break-up occurs. The simulation results indicate, that break-
up only occurs in the top of the column. The energy dissipation in case of break-up is
larger than 10-1 and the bubble diameters are generally large (> 5 mm). In this case the
break-up rate is around 10-4, which is high enough for break-up to occur. In order to
further validate the break-up model, cases experiencing a higher energy dissipation rate
should be considered in future research.

3.7.2 Coalescence

In the DBM the coalescence model of Chesters (1991) (equation 3.42) and Lee
et al. (1987) (equation 3.38) are implemented. In this section the results of the
simulations are discussed and compared to with experimental results, which were
obtained with digital image analysis, which is described in Chapter 5. The different
computational cases are listed in Table 3.4. In all cases also the break-up model of Luo
and Svendsen (1996) was implemented.

The break-up and coalescence model are verified with the use of a pseudo 2D bubble
column. The bubble column has the dimensions of 0.20 x 0.03 x 1.40 m. The bottom of
the column contains a nozzle of 2 cm with a membrane. By using a membrane in the
nozzle the incoming bubbles in the plume have a bubble size distribution around 3 mm.
This value was used as the initial bubble size in the simulations.
The grid of the computational domain consists of 20 x 3 x 140 grid cells and the time step
is 1.0.10-3 s. In the simulation the sparger is modelled as 8 nozzles in two rows of four
nozzles. The distance between the nozzles is 1 cm. The bubbles are entering the column
with a normal bubble diameter distribution. The LES model is used to model the sub-grid
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scale turbulence. Each case was simulated for 130 s., which appears to be sufficient, as
was found in the previous section.
The simulation results of the two coalescence models are compared with the experimental
results by means of the bubble size distribution. The number of classes used in the bubble
size distribution is 10. Furthermore the number mean, volume mean and Sauter mean
diameter are calculated at 4 different heights of the column. These three diameters are
respectively given by:

The number mean diameter (average diameter of all bubbles in the sample):
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(3. 67)

The volume mean diameter (diameter of a bubble whose volume, if multiplied by the
total number of bubbles, equals the total volume of the sample):
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The Sauter mean diameter (diameter of a bubble whose ratio of volume to surface area is
the same as the complete sample):
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Table 3.4: Overview of different simulation cases coalescence.

case coalescence model superficial gas
velocity [m/s]

1 eq. 3.42 2.78.10-3

2 eq. 3.38 2.78.10-3

3 eq. 3.42 1.39.10-3

4 eq. 3.42 4.17.10-3
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Two important parameters for coalescence to occur are the collision rate and the
coalescence efficiency. The collision frequency is determined by the DBM. For every
collision the coalescence efficiency is calculated. It was found that in the simulations for
the coalescence model of Chesters (1991) (case 1) that 43 % of all collisions results in
coalescence. The coalescence efficiency is around 0.43 for the whole column.
Most of the collisions and thus of the coalescence occur in the lower part of the column
because in this part the bubbles stay together in a plume. In the upper part of the column
the bubbles are more spread over the column and the change for collision is smaller. Most
of the collisions occurs in the lower part of the column (see Figure 3.19).
For the coalescence model of Lee et al. (1987) (case 2) the results are different. 85 % of
all collisions results in coalescence. Most coalescence occurs in the lower part of the
column, in the same area as in the model of Chesters (1991) (see Figure 3.20).

Figure 3.19: Percentage of collisions in bubble column with the model of Chesters (1991).

Figure 3.20: Percentage of collisions in bubble column with the model of Lee et al. (1987).
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Figure 3.21 shows the number mean, volume mean and Sauter mean diameter vs. the
height in the column. The two coalescence models are compared to the experimental
results (see Chapter 5). It can be concluded from the definition of the three different mean
diameters, that number mean diameter < volume mean diameter < Sauter mean diameter.

The mean diameter increases with increasing height in the column, because the higher
their position in the column, the longer bubbles generally have resided in the column and
the more opportunity they have had to coalesce. The increase in diameter can also be seen
in the experiments. The difference in mean diameter between the simulation results of
model of Chesters (1991) and the experiments is 15 %. For the model of Lee et al. (1987)
the difference is around 35 %.

In Figure 3.22 the bubble size distribution at different heights in the column for the
simulations and the experiments can be seen. As can be observed in this figure the bubble
size distribution moves to larger diameters, with increasing height. In the lower part of
the column the bubble size distribution is narrower and the maximum is higher. Most of
the bubbles in the lower part of the column have a diameter around 2.8 mm. The number
of coalesced bubbles is small. The bottom contains a large number of small bubbles and
therefore the bubble size distribution is narrow. In the higher part of the column the
bubble size distribution is broader than in the bottom part due to coalescence.
The bubble size distribution in the experiments also moves to larger diameters when
increasing the height due to coalescence. However, the bubble size distribution in the top
of the column in the experiments is narrower and the maximum is higher than in the
simulations. The difference is due to the larger number of small bubbles in the top of the
column in the simulations.
In the simulation results the maximum of the bubble size distribution is found at lower
diameters. The maximum is higher and the distribution is narrower compared to the
experimental results.  In the experiments the bubbles immediately coalesce when they
leave the nozzle and the maximum shifts to higher diameters.

In both models the mean diameter is overpredicted, probably due to the fact that hardly
any break-up occurs. The results of the coalescence model of Chesters (1991) combined
with the break-up model of Luo and Svendsen (1996) are closer to the experimental
results.
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Figure 3.21: Comparison of simulation and experimental results of mean diameter vs. height for case 1
and 2 (see Table 3.4). Top: number mean diameter; middle: volume mean diameter; bottom: Sauter mean
diameter.
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Figure 3.22: Simulated and experiments bubble size distribution after 130 s. Top: case 1; middle: case 2
(see Table 3.4); bottom: experiments.
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Figure 3.23: Snap shots of the liquid phase velocity of the DBM in a pseudo 2D column after 70 s. Left:
case 1; right: case 2 (see Table 3.4). Reference vector = 0.2 m s-1.

Figure 3.24: Snap shots of the bubble plume of the DBM in a pseudo 2D column after 70 s. Left: case 1;
right: case 2 (see Table 3.4).
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In Figure 3.23 and 3.24 snap shots of the liquid phase velocity and the bubble position in
the DBM with Chesters (1991) (case 1) and Lee et al. (1987) (case 2) are presented. In
these figures it is found that the flow is driven by a bubble plume, which moves through
the column in an oscillatory manner. The total number of bubbles present in the column
is less when the model with Lee et al. (1987) is used, due to the higher coalescence
efficiency. In the simulations and the experiments it is observed that in the lower part of
the column the bubbles are close together forming a bubble plume. In the upper part of
the column the bubbles are more uniformly distributed. In Figure 3.22 can be seen, that in
the case with Chesters (1991) the liquid phase velocity is higher in the upper part of the
column. In the case with Lee et al. (1987) the liquid phase velocity is the same in the
lower and upper part of the column. The bubble plume can be seen in the liquid phase
velocity.

Figure 3.25: Experimental images of bubble plume in pseudo 2D column at a superficial gas velocity
of 5.56.10-3 m s-1.
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In case 3 the model of Chesters (1991) is used with a lower superficial gas velocity
(1.39.10-3 m s-1). The number of collisions between two bubbles that result in coalescence
at a lower superficial gas velocity is around 43 %, which is the same number as in case 1.
Around 65% of the coalescence occurs in the lower part of the column (< 0.70 m).
Figure 3.26 shows the number mean, volume mean and Sauter mean diameter vs. the
height in the column for case 3. The mean diameters of the simulations are smaller than
the experimental results with lower superficial gas velocity. The bubble size distribution
of case 3 in Figure 3.27 is narrower and the maximum of the distribution is found at
smaller bubble diameter than in the case of higher superficial gas velocity. The bubbles
stay together in a bubble plume. Compared to experimental results and the case with
higher superficial velocity the number of collisions is lower when using a lower
superficial velocity. Due to the low number of collisions the number of coalescence is
much lower. A possible explanation is that the zig-zag and spiral movement of bubbles is
not implemented in the model.

In Figure 3.28 snap shots of the liquid phase velocity and the bubble plume of case 3 are
presented. The number of bubbles is less than with higher superficial gas velocity
(case 1). The horizontal distribution of the bubble plume is less than in case 1. As can be
seen in this figure, the bubbles in the plume are rising in ‘lines’ behind each other. This
can be the effect of the large grid size. The liquid phase velocity is smaller in the case
with lower superficial gas velocity.

In case 4 the model of Chesters (1991) is used with a higher superficial gas velocity
(4.17.10-3 m s-1) than in case 1. The number of collisions between two bubbles that result
in coalescence is the same number as in case 1. Around 88% of the coalescence occurs in
the lower part of the column (< 0.70 m).
In Figure 3.29 the number mean, volume mean and Sauter mean diameter vs. the height
in the column are presented for case 4. The mean diameter increases with increasing flow
rate. This is due to the fact that when the flow rate is higher, the gas fraction increases
and the bubbles are closer together. The differences between the simulated mean
diameters and the experiments in case 4 are higher than in case 1. In both the
experimental and simulation results it can be seen, that the slope of the line in the lower
part of the column is steeper than in the higher part. The number of collisions resulting in
coalescence decreases higher in the column.
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Figure 3.26: Comparison of simulation and experimental results of mean diameter vs. height for case 3
(see Table 3.4). Top: number mean diameter; middle: volume mean diameter; bottom: Sauter mean
diameter.
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Figure 3.27: Bubble size distribution after 130 s. Top: case 3 (see Table 3.4); bottom: experimental results.

In Figure 3.30 it can be seen that in the lower part of the column the bubbles stay together
in a plume. The bubbles are close together and they collide very often and coalescence
can occur. In the higher part of the column, the bubbles are spread through the whole
column and no coalescence is observed. The hold-up is low and therefore there is more
space between the bubbles. The bubbles do not collide very often and the chance for
coalescence is lower. The liquid phase velocity is much higher in the case with a higher
superficial gas velocity.
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The bubble size distribution of case 4 in Figure 3.31 is wider and the maximum is at
larger bubble diameter than in the experimental results. This is opposite to case 1. The
higher the superficial gas velocity, the more collisions and coalescence takes place and
the higher the bubble diameter in the column. Due to the fact that hardly any break-up
occurs, the bubble diameter can increase to large diameter.

Figure 3.28: Snap shots of the bubble plume and liquid phase velocity for case 3 in a pseudo 2D column
after 70 s.
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Figure 3.29: Comparison of simulation and experimental results of mean diameter vs. height for case 4 (see
Table 3.4). Top: number mean diameter; middle: volume mean diameter; bottom: Sauter mean diameter.
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Figure 3.30: Snap shots of the bubble plume and liquid phase velocity for case 4 in a pseudo 2D column
after 70 s.
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Figure 3.31: Bubble size distribution after 90 s. Top: case 4 (see Table 3.4); bottom: experimental results.
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smaller time step or grid size the difference between simulation and PIV results is
marginal.

When no LES model is used the average velocity and velocity fluctuations of the liquid
phase are much lower than in the case with LES. The effective viscosity in case without
LES is lower due to the absence of the turbulent viscosity. Low viscosities lead to less
dampening of the bubble plume dynamics and this in turn leads to flatter average liquid
phase velocity profiles. The opposite effect is observed when accounting for bubble
induced turbulence, due to an increase in the effective viscosity. The influence of the sub-
grid scale velocity is negligible.

When the lift coefficient is reduced from 0.5 to 0.3 the average velocity and velocity
fluctuations are much higher. In case of a smaller lift coefficient the spreading of the
plume is less and therefore the dynamics of the plume are reduced, which leads to a
higher average velocity in the centre of the column.

The best results are obtained when a LES model is incorporated, using a time step of
0.5.10-3 s, a grid size of 1.0 cm in all directions and a lift coefficient of 0.5.

In the DBM the coalescence model of Chesters (1991) and Lee et al. (1987) and the
break-up model of Luo and Svendsen (1996) are implemented. The results are compared
to experimental results, measured in a pseudo 2D bubble column with an air-water
system.
The break-up model of Luo and Svendsen (1996) and others were developed for
energy dissipations larger than 0.5 m2 s-3. In bubble columns with low gas flows and low
turbulence the energy dissipation is in the order of 10-2 m3 s-1. When these energy
dissipation rates are used in the break-up model, hardly any break-up occurs. In the
simulations break-up only occurs in the top of the column, when the energy dissipation is
larger than 10-1 m3 s-1 and the diameter of the bubble is large (> 5 mm).
The number of collisions between two bubbles that result in coalescence is 43 % with the
coalescence model of Chesters and 85 % with the coalescence model of Lee et al. (1987).
Most of the coalescence occurs in the lower part of the column. When either of the
coalescence models is used, the mean diameter is overpredicted, due to the fact that
hardly any break-up occurs. The results of the coalescence model of Chesters (1991)
combined with the break-up model of Luo and Svendsen (1996) are closer to the
experimental results.
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When changing the superficial gas velocity the coalescence efficiency is still the same,
but the number of collisions and thus of coalescence changes. The higher the superficial
gas velocity, the more collisions occur in the column. Therefore the differences between
the simulated mean diameters and the experiments at higher superficial gas velocity are
higher. The bubble size distribution is wider at higher superficial gas velocity.
Further research is necessary to resolve the differences between the experiments and the
simulations.
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Chapter 4

TWO-FLUID MODEL

Abstract

In this chapter three different Euler-Euler models will be used to describe two-phase
flows in bubble columns: a gas-liquid model, a gas-liquid model with the MUltiple-Size-
Group (MUSIG) model for the gas phase and a gas-gas-liquid model. For the simulations
of the Euler-Euler model in this thesis the commercial code CFX 4.4 will be used. In the
Euler-Euler models a LES-turbulence model will be incorporated. The MUSIG model,
including population balances with a break-up and coalescence model, can be used to
study the bubble size distribution in the column. The effect of the different rise velocities
of ‘small’ and ‘large’ bubbles is studied with a three-phase gas-gas-liquid model. The
gas phase is divided into two groups, one with smaller bubble diameters and one with
larger bubble diameters with different drag relations. Simulation results are compared to
experimental PIV results of Deen (2001). Good agreement was found when comparing
the simulation results of the gas-liquid model to the experimental results. The difference
between the results of the gas-liquid model and the gas-liquid model with MUSIG mode
is small. When the LES model is implemented the average velocity and velocity
fluctuations of the liquid phase are much higher than in the case without LES, due to an
increase of the effective viscosity in the case with LES. The magnitude of the average
liquid velocities of the gas-gas-liquid model is smaller than for the gas-liquid model.
In the gas-liquid model with MUSIG model the bubbles in the gas phase are divided into
10 equally sized bubble size groups from 0.0 - 10.0 mm. The difference between the
models with and without MUSIG model is very small, because the model that was used
for the calculation of the drag force does not depend on the bubble size. The results of the
Euler-Euler model with MUSIG with the coalescence model of Chesters (1991) and the
break-up model of Luo and Svendsen (1996) are the best in agreement with the results of
the DBM.
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4.1 Introduction

Bubble column reactors are commonly used as reactors in chemical, biochemical and
petrochemical processes. The applications usually involve gas-liquid mass transfer and
(exothermal) chemical reactions.
Flows in industrial bubble columns can be simulated using Euler-Lagrange models or
Euler-Euler models. The Euler-Lagrange model follows each bubble separately and is
described in Chapter 3. The Euler-Euler model, also called two-fluid model models treats
the different phases as interpenetrating fluids. It solves the ensemble averaged mass and
momentum conservation equations to describe the time-dependent motion of both the
liquid and gas phase.
The Euler-Euler model requires closure relations for the unclosed parts of the model, like
the Euler-Lagrange model, e.g. closures for the forces acting on a bubble, the break-up
and coalescence of bubbles and the turbulence.
In the Euler-Lagrange direct bubble-bubble interaction is described using an encounter
model. Here the incorporation of a bubble size distribution is straightforward. The
number of bubbles in the Euler-Lagrange model is limited to a number of about 105 and
significant storage requirements and CPU power are required.
The Euler-Euler model can be used to simulate the flow in an industrial bubble column.
In the Euler-Euler model the number of bubbles is irrelevant and storage requirements
and demand of computer power depend only on the number of grid cells required.
Furthermore in this model a break-up and coalescence model can be incorporated and the
bubble size distribution can be calculated using a population balance.

By comparing the Euler-Euler and Euler-Lagrange model Sokolichin et al. (1997)
concluded that the Euler-Euler model suffers from numerical diffusion when first order
discretisation schemes were used for the convective fluxes. In the Euler-Euler model the
gas fraction is smeared out over the entire grid cell, whereas in the Euler-Lagrange model
no numerical diffusion will be introduced into the dispersed phase since each bubble is
tracked individually. They recommended the use of higher order discretisation schemes
for the Euler-Euler model to reduce the numerical diffusion. When using an appropriate
discretisation scheme the Euler-Euler method provides results, which are quite simular to
these obtained with the Euler-Lagrange method.
Sokolichin and Eigenberger (1994) concluded this once more by comparing the results of
their Euler-Euler model to the Euler-Lagrange model of Delnoij et al. (1997).
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Also Lapin and Lübbert (1994) concluded that the Euler-Euler method is very sensitive to
false diffusion when using first order schemes.

Some authors introduced a turbulence model into the Euler-Lagrange or Euler-Euler
model. Laín et al (2001) predicted the flow in a cylindrical bubble column using the
k-ε model. The values of the mean velocities showed reasonable agreement with the
experiments for both phases, but the fluctuating components were overpredicted. Also the
axial liquid velocity and the turbulent kinetic energy differed from the experimental
findings.
Sokolichin and Eigenberger (1999), Pfleger et al. (1999) and Mudde and Simonin (1999)
showed that the turbulent viscosity in 2D models is overestimated. This is probably due
to an overprediction of the turbulent kinetic energy.
Sokolichin and Eigenberger (1999) used 3D simulations and the k-ε model. They used
three different grids and observed that the solution was basically the same for all grids.
Pfleger et al. (1999) reported that bubble induced turbulence may play an important role,
which can be modelled by introducing an extra term in the k-equation
(Friberg, 1998). However, in their paper they used the standard k-ε model in an air-water
system. They investigated the use of a turbulent dispersion term in the continuity
equation instead. They concluded that most of the gas dispersion was already obtained by
numerical diffusion, so there was no need for an additional dispersion term anymore. The
use of turbulent dispersion also reduced the dynamic behaviour. Pfleger et al. (1999)
therefore concluded that the use of a turbulent dispersion term is not necessary. It is
important to realise that the use of schemes with less numerical diffusion or finer grids
may still need turbulent dispersion terms though.
Although some of the authors have obtained good results using the k-ε model, the model
still fails in case of flows in complex geometries. Furthermore the assumption of isotropic
turbulence is not valid in gas-liquid flows. In these cases advanced models are required.
Kuipers and Van Swaaij (1997) and Jakobsen et al. (1997) suggested the use of large
eddy simulations (LES). LES can be used well in the area of 3-dimensional dynamic
flows. It is clear that problems of turbulent multiphase flow are within this area.
Deen (2001) compared results of the k-ε model and the LES model with experimental
results. The simulation results of Deen (2001) of the flow of a bubble plume in a flat
bubble column, using the k-ε turbulence model corresponded well with both the
experiments of Becker et al. (1994) and the numerical results obtained by Sokolichin and
Eigenberger (1999). The large difference between the simulations and the experiments
was the overestimation of the oscillation period by 20 s. Both the velocity and the
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velocity fluctuations were in quantitative agreement with the measurement data of Becker
et al. (1994). In the simulations of the 3D bubble column the LES model showed better
agreement with experimental PIV results than the k-ε model. Contrary to the simulations
with the k-ε model, the LES model captured the transient movement of the bubble plume.
Furthermore, the velocity and the velocity fluctuations were in good quantitative
agreement with the measurements.

To study the bubble size distribution in a bubble column a break-up and coalescence
model will be incorporated in the Euler-Euler model. In literature many models are
available to describe the break-up of bubbles. Most of the published literature on bubble
break-up is based on the early work of Hinze (1955). Bubble break-up occurs through
bubble interaction with turbulent eddies. The responsible eddies are equal or marginally
smaller than the bubble size. Most models define a breakage efficiency and breakage
frequency to calculate the number of bubbles breaking. Coulaloglou and
Tavlarides (1977) developed a model for break-up rates of liquid drops based on the
fraction of drops undergoing break-up and the time required for break-up to occur. The
fraction of drops in the breakage frequency is assumed proportional to the fraction of
turbulent eddies colliding with the droplet that have a turbulent kinetic energy greater
than the droplet surface energy. They assumed that the droplet sizes formed upon
breakage are represented by a normal density function. Two unequal droplets were
assumed to form. Prince and Blanch (1990) derived a coalescence model based on the
model of Coulaloglou and Tavlarides (1977). Their estimate of the eddy-bubble collision
frequency is based on isotropic turbulence. The criterion for break-up relates the energy
of the eddy to the surface tension force of the bubble. Shimizu derived almost the same
model as Prince and Blanch (1990). Tsouris and Tavlarides (1994) criticized their
original model because it predicted a critical diameter whose break-up frequency is
maximized. The Prince and Blanch model (1990) exhibits the same behavior. Tsouris and
Tavlarides (1994) proposed a new model which predicted a monotonic increase of the
break-up frequency. Luo and Svendsen (1996) did not make any distinction between
drops and bubbles in the derivation of their theoretical model. The turbulence in this
model is assumed to be isotropic. The model of Luo and Svendsen (1996) contains no
unknown or adjustable parameters and favores unequal breakage.
Coalescence of two bubbles in turbulent flow occurs in three steps: Collisions of the two
bubbles, drainage of the liquid film between the bubble until this film reaches a critical
thickness and rupture resulting in coalescence. Modeling of the coalescence process
requires only one function for the coalescence frequency, which is the product of the
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collision frequency and the coalescence efficiency. The efficiency can be described as the
fraction of drops, which coalesce after collision. Coulaloglou and Tavlarides (1977)
derived the expression for the collision frequency of drops by assuming that the
mechanism of collision in a locally isotropic field is analogous to collisions between
molecules as in the kinetic theory of gases. The force, which compresses the drops, must
act for a sufficient time that the intervening film drains to a critical thickness so that film
rupture and coalescence will take place. The time for this process to occur, the contact
time, must exceed the coalescence time of the droplets. In contrast to Coulaloglou and
Tavlarides (1977), Sovová (1981) stated that the kinetic energy of a collision is the
controlling factor for coalescence. Coalescence has been found to follow in a very short
time after collision and its probability increases with increasing energy of collision. This
model predicts a decreasing efficiency with decreasing drop size, in contrast to the model
of Coulaloglou and Tavlarides (1977). Sovová (1981) suggested that a combination of
both mechanisms of collision may be postulated. Following Coulaloglou and Tavlarides
(1977), Lee et al. (1987) proposed a model based on the consideration that coalescence
occurs if the contact time exceeds the coalescence time. They considered the coalescence
time, as the time required for thinning plus the time of rupture. Tobin
et al. (1990) presented the kinetic collision model. The concept is that in violent
collisions the inertia of the drops is the governing factor and the effectiveness of the
collision depends on the adequacy of the collision kinetic energy to accomplish film
drainage. Prince and Blanch (1990) considered the collisions arising from turbulence,
buoyancy and laminar shear. Their expression for the coalescence efficiency is based on
the model of Coulaloglou and Tavlarides (1977). Chesters (1991) also applied the same
relation for the efficiency of bubble coalescence as Coulaloglou and Tavlarides (1977),
but their definition for the contact time and coalescence time is different. The coalescence
efficiency in their model is based on the Weber number.
Lo (1996) incorporated the break-up model of Luo and Svendsen (1996) and the
coalescence model of Prince and Blanch (1990) in his population balance. The predicted
results were in broad agreement with the measured data. However the coalescence rate
was too high and was scaled by a factor of 0.05.
Lehr and Mewes (2000) also used the break-up model of Luo and Svendsen (1996) and
the coalescence model of Prince and Blanch (1990). Their model is able to predict the
bubble size distribution in a bubble column including the formation of large bubbles at
high superficial gas velocities. They implemented the transport equation in a commercial
CFD code, to demonstrate the possibility of combining population balances with CFD. A
dynamic two-fluid model was used and the calculations for three space coordinates were
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performed for cylindrical bubble columns. Time averaging leaded to a stationary and
axial symmetrical flow field that agrees with experimental results. Pohorecki et al. (2001)
used a simplified version of the theoretical model developed by Prince and
Blanch (1990). The results of the calculations were compared with experimental data and
good agreement was found between calculated and experimental values.

In this thesis three different 3D Euler-Euler models were used to describe two-phase
flows in bubble columns: A gas-liquid model, a gas-liquid model with the MUltiple-Size-
Group (MUSIG) model for the gas phase and a gas-gas-liquid model. For the Euler-Euler
models the commercial code CFX 4.4 was used. In all three Euler-Euler models a LES-
turbulence model was incorporated. According to Deen (2001) a LES model gives better
results compared to experimental results than the k-ε model. The MUSIG model,
including population balances with a break-up and coalescence model, can be used to
study the bubble size distribution in the column. All bubbles in this model have the same
rise velocity. To study the effect of the different rise velocities of ‘small’ and ‘large’
bubbles a three-phase gas-gas-liquid system is also simulated.

4.2 Theory Euler-Euler model

In the Euler-Euler model the gas and liquid phases are described as continuous fluids
which penetrate each other. For both phases the ensemble averaged continuity and
momentum equations are solved. For phase f these equations can be written as:

( ) ( ) 0f f
f f ft

α ρ
α ρ

∂
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∂
u (4. 1)
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The stress term of phase f in equation 4.2 is described as follows:

( ) ( ),
2
3

T

f eff f f f fτ µ  = − ∇ + ∇ − ∇  
u u I u (4. 3)

where µeff,f is the effective viscosity of phase f.
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The last term in equation 4.2 describes the ensemble averaged momentum exchange
between the phases, due to interface forces. The interface force is composed of separable
contributions originating from drag, lift and virtual mass and is given by:

, , , , ,IF l IF g D l L l VM l= − = + +F F F F F (4. 4)

The total drag per unit volume on the continuous phase is:

( ),
3
4

D
D l g l g l g l

B

C
d

α ρ= − −F u u u u (4. 5)

The drag coefficient CD is a function of Re and Eo. Most drag relations are
experimentally determined (see also Chapter 2). The drag curve for individual bubbles
can be correlated for several distinct flow regimes.

In the viscous regime (0 ≤ Re ≤ 500-1000) both the skin friction (due to viscous surface
shear) and the form drag (due to pressure distribution around the body) are important.
The drag coefficient for spherical bubbles continues to decrease monotonically with the
Reynolds number. Several empirical correlations are available. Those available in the
commercial package CFX were derived by Schiller and Nauman (1933), Ishii and
Zuber (1979) and Ihme et al. (1972). These correlations are respectively give by:

( )0.68724 1 0.15Re
ReDC = + (4. 6)

( )0.7524 1 0.1Re
Re

= +DC (4. 7)

0.57324 5.48Re 0.36
Re

−= + +DC (4. 8)

These three relations are plotted in Figure 4.1 in which CD vs. Re is given. The
differences between these relations are small.
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Figure 4.1: Comparison of 3 relations of CD vs. Re.

The third region is the inertial region or turbulent region (500-1000 ≤ Re ≤ 1.105-2.105).
The form drag dominates in this region and bubbles become distorted. Ishii and
Zuber (1979) gave the following relation for the drag coefficient in this region:

1
2

2 Eo
3DC = (4. 9)

where Eo is the dimensionless Eötvös number defined by:

2

Eo Bgd ρ
σ

∆= (4. 10)

It is noted that when equation 4.9 is used the drag force becomes independent of the
bubble size, which is in agreement with the constant rise velocity that is found for large
bubbles as can be seen in Figure 4.2.
In the Euler-Euler simulations described in this chapter, equation 4.9 is used for the drag
relation.
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Figure 4.2: Terminal velocity of air bubbles in water at 20 oC.

Tomiyama (1998) gave the following relation for the CD in a slightly contaminated
system:

( )0.68724 72 8 Eomax min 1 0.15Re , ,
Re Re 3 Eo 4DC   = +   +  

(4. 11)

A bubble, rising in a non-uniform liquid flow field, experiences a transverse lift force due
to vorticity, rotations of bubbles or shear. The lift force consists of two parts: The
classical shear-induced lateral lift force and the wake induced lift force. Both forces act
simultaneously on the bubble. For small, spherical bubbles the classical shear-induced
lateral lift force dominates and for large, deformed bubbles the wake induced lift force
dominates.

The lift force is perpendicular to the path of the bubble and is given by:

( ),L l g l L g l lCα ρ= − ×∇×F u u u (4. 12)

where CL is the lift coefficient which is set to 0.5.
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The resistance to acceleration of the bubble is due to an ‘added’ of ‘virtual’ mass of the
liquid that has to be accelerated when a bubble accelerates. The virtual mass force is
given in terms of relative acceleration of the phases:

,
g g l l

VM l g l VM

D DC
Dt Dt

α ρ
 

= − 
 

u uF (4. 13)

with CVM the virtual mass coefficient with a value of 0.5. The Df/Dt operators denote the
substantial time derivatives of phase f.

4.3 Turbulence model

The effective viscosity of the liquid phase µeff,l (equation 4.3) in the stress term of the
momentum equation 4.2 is composed of three different contributions: The molecular
viscosity, the turbulent viscosity and the viscosity due to bubble induced turbulence:

, , , ,eff l L l T l BIT lµ µ µ µ= + + (4. 14)

The effective gas viscosity is based on the effective liquid viscosity and is calculated as
follows (Jakobsen et al., 1997):

, ,
g

eff g eff l
l

ρ
µ µ

ρ
= (4. 15)

Note that, the contribution of the diffusion term in the gas momentum will generally be
very small due to the small density ratio.
There are several models for the bubble induced turbulence. In this work the model
proposed by Sato and Sekoguchi (1975) was used:

, ,BIT l l BIT g B g lC dµµ ρ α= −u u (4. 16)

where Cµ,BIT is a model constant and equal to 0.6.
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To compare the results of the DBM and CFX in both models a LES turbulence model is
implemented to calculate the turbulent viscosity.

Here the turbulent viscosity according to the LES model proposed by Smagorinksy
(1963) is used. The equation for turbulent viscosity, i.e. the SGS viscosity, is given by:

( )2
,T l l SCµ ρ= ∆ S (4. 17)

in which CS is a constant with a value of 0.1, S the characteristic filtered rate of strain and
∆=(∆x∆y∆z)1/3 the filter width.

4.4 Bubble size distribution

In most multiphase flow models, the dispersed phase is characterised by a single mean
diameter. In reality a wide spectrum of bubble sizes and shapes exists, because of break-
up and coalescence of the bubbles in the column of the dispersed elements.

Generally, in simulations of a gas-liquid system the bubbles can be divided into N size
groups. Each of these size groups can be treated as a separate phase in a multiphase flow
calculation. This multiphase flow model therefore consists of N+1 separate phases and
thus N+1 sets of coupled continuity and momentum need to be solved. Because of the
large number of equations involved, the number of size groups, which can be used in
practical calculations, is limited typically to 2 or 3 size groups. As a result, the bubble
size distribution cannot be represented adequately.

In CFX 4.4 the MUltiple-Size-Group (MUSIG) model developed by Lo (1996) can be
used to handle dispersed multiphase flows in which the dispersed phase has a large
variation in size. In the MUSIG model it is assumed that the bubbles of all size classes
have the same rise velocity. This is a reasonable assumption for bubbles larger than 1 mm
(see Figure 4.2). The multiphase flow model is reduced to a two-fluid approach with one
velocity field for the continuous phase and one for the dispersed phase. The assumption
of a common rise velocity has the favourable effect that only one set of equations is
needed to describe the hydrodynamics of the gas phase. The continuity equations of the
bubble size groups are retained and solved to represent the bubble size distribution.
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MUSIG provides a framework in which the population balance method together with
break-up, coalescence and turbulence models can be incorporated into CFD calculations.
With this approach, it is possible to consider a large number of bubble size groups
(10 to 20 bubble phases) and this gives a better representation of the size distribution.

Population balance methods are well-established techniques for computing the size
distribution of the dispersed phase and accounting for break-up and coalescence. The
continuity equation for size group i of the dispersed phase, used for the population is:

( ) ( ) , , , ,g g i g g g i BU i BU i C i C if f B D B D
t

α ρ α ρ∂ + ∇ ⋅ = − + −
∂

u (4. 18)

The first and second term of this equation respectively the rate of change and the
convection of the bubble fraction. The four terms on the right hand side together form the
rate of mass transfer into the size group due to break-up and coalescence. BBU is the birth
rate due to break-up of bubbles in size groups with larger bubbles. BC is the birth rate due
to coalescence of bubbles in size groups with smaller bubbles. DBU and DC are the death
rate due to respectively break-up and coalescence of bubbles in size group i.

This equation has the form of the transport equation for a scalar variable, fi, of the
dispersed phase and can be solved numerically. The size distribution of the dispersed
phase is defined by the variable fi. The local Sauter mean diameter can be derived from:
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=
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(4. 19)

The Sauter mean diameter is used to calculate the drag force and other forces between the
two phases.

The sources and sinks (B and D in equation 4.18) due to break-up and coalescence have
to be defined to complete the model. In CFX 4.4 the default model for break-up is the
model of Luo and Svendsen (1996). The default coalescence model is the one proposed
by Prince and Blanch (1990).
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4.4.1 Break-up model

The break-up model of Luo and Svendsen (1996) is described in full detail in Chapter 3
of this thesis. They developed a theoretical model for the break-up of drops and bubbles
in turbulent dispersions. The model is based on the theory of isotropic turbulence and
contains no unknown parameters. Here the model will be briefly summarised. Further
details can be found in Chapter 3.

The birth rate of bubbles belonging to group i due to break-up of larger bubbles is:

,
1

( : )
N

BU i j i Bj
j i

B g V V n
= +

= ∑ (4. 20)

where g(Vj:Vi) is the breakage rate of bubbles of volume Vj into bubbles of volume Vi and
Vj-Vi, as described in Chapter 3 and nBj number of bubbles of group j per unit dispersed
volume. g(Vj:Vi) contains a callibration factor fB for calibration of the model (0 ≤ fB ≤ 1).
The death rate of bubbles belonging to group i due to break-up to smaller bubbles is:

,BU i i BiD g n= (4. 21)

where gi is the breakage rate of  bubbles of group i and ni is the number of bubbles
group i per unit dispersed volume.

4.4.2 Coalescence model

In Chapter 3 two different coalescence models of Chesters (1991) and Lee et al (1987)
are described in detail. The default coalescence model in CFX 4.4 is the coalescence
model of Prince and Blanch (1990). According to Prince and Blanch coalescence of two
bubbles in turbulent flows occurs in three steps. First the bubbles collide, trapping a small
amount of liquid between them. Then this liquid film separating the bubbles drains until
it reaches a critical thickness. Finally the film ruptures and the bubbles coalesce. Two
bubbles will coalesce, provided they remain in contact for a period of time sufficient for
the liquid film between them to thin to the critical value necessary for rupture.
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The coalescence frequency is given by the collision frequency multiplied by the
coalescence efficiency:

ij C ij ijQ f θ λ= (4. 22)

where fC is added for calibration of the model (0 ≤ fC ≤ 1), θij is the collision frequency
and λij is the coalescence efficiency.

Collisions may occur due to a variety of mechanisms. Prince and Blanch (1990)
considered collisions arising from three different mechanisms: turbulence, buoyancy and
laminar shear. In CFX only the turbulence collision model is included, which is given by:

( )1
22 2T

ij ij ti tjAθ = +u u (4. 23)

where the collision cross-sectional area of the bubble is defined by:

( )2

4ij Bj BiA d dπ= + (4. 24)

The turbulent velocity in equation 4.23 is given by:

2
1

3
14.1 Bt dε=u (4. 25)

with ε the energy dissipation rate.

When using the Smagorinsky (1963) model the energy dissipation rate can, after some
manipulation, be written as follows:

( )
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(4. 26)

The coalescence efficiency λij is a function of the contact time between bubbles and the
time required for bubbles to coalesce, the coalescence time. Coalescence will take place
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if the contact time exceeds the coalescence time. For further details the reader is referred
to Chapter 3.

The birth rate of bubbles belonging to group i due to coalescence of bubbles belonging to
group j and group k is:

,
1 1
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i i

C i jk Bj Bk
j k

B Q n n
= =

= ∑∑ (4. 27)

whereas the death rate of bubbles belonging to group i due to coalescence of bubbles
belonging to group i and and group j is:
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= ∑∑ (4. 28)

4.5 Boundary conditions and numerical implementation

In this work the commercial code CFX 4.4 (AEA Technology, England) is used for the
Euler-Euler model. In CFX 4.4 closure relations for forces acting on a bubble and models
for break-up, coalescence and the bubble size distribution are already implemented.
The Smagorinksy model and the averaging routines were implemented through the use of
user Fortran following the work of Jakobsen (1997).

The boundary conditions at the inlet are defined as follows:

,
, ,

g s
y g in

g in

u W D
u

Aα
×

= (4. 29)

with ug,s the superficial gas velocity and W x D the cross sectional area of the column.
The gas inlet area Ain was implemented in a central area. In the standard case the size was
3x3 grid cells. A superficial gas velocity of 4.9 mm/s leads to a gas velocity at the inlet
of 0.12 m/s. The time step in the simulations was 5.0.10-3 s. For both phases no-slip
boundary conditions are used for the confining solid walls.
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The simulations were started with a pressure boundary at the outlet of the column. After
10,000 time steps the pressure boundary was changed into a degassing boundary. Due to
the nature of this type of boundary condition it was not possible to start immediately with
a degassing boundary. Details on these boundary conditions can be found in the CFX
user manual.

In the simulations, a bounded third order accurate QUICK scheme was used for the
discretisation of the convection terms, while the diffusion terms were discretised with the
use of the second order accurate central differencing scheme.

4.6 Results

The model described in the previous sections was used to simulate the flow in a bubble
column. In this section the results of the simulations are discussed.
Three different models are tested and compared in the Euler-Euler simulations: A gas-
liquid model (G-L), a gas-gas-liquid model (G-G-L) and a gas-liquid model with the
MUSIG model for the gas phase (MUSIG). For the gas-liquid model the time step, grid
size and turbulence are investigated. The results of the gas-liquid model with MUSIG and
the gas-gas-liquid model are compared to the gas-liquid model.  In Table 4.1 an overview
of the different cases is given.

Table 4.1: Overview of different simulation cases.

Case CFX model ∆x∆z [mm] ∆y [mm] dB [mm] ∆t
[ms]

µT,l

0 G-L 10 10 4.0 5.0 Eq. 4.18
1 G-L 5 5 4.0 5.0 Eq. 4.18
2 G-L 10 10 4.0 2.5 Eq. 4.18
3 G-L 10 10 4.0 5.0 0
4 MUSIG 10 10 0.0-10.0 5.0 Eq.4.18
5 G-G-L 10 10 2.0 and 6.0 5.0 Eq. 4.18
6 G-L 10 10 2.0 5.0 Eq. 4.18
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The results of all three models are compared with experimental PIV results obtained by
Deen (2001). The bubble column used by Deen (2001) had the dimensions of
0.15 x 0.15 x 0.45 and was filled with distilled water. Air was introduced into the column
through a perforated plate. The plate contained 49 holes, with a diameter of 1 mm, which
were positioned in the middle of the column at a square pitch of 6.25 mm. The superficial
gas velocity was 4.9 mm/s.

The flow for each case was simulated for a period of 200 s. The data was time-averaged
over the last 162.5 s.

4.6.1 Gas-liquid model

The first simulated Euler-Euler model is a two-phase model, a gas-liquid model. The gas
phase consisted of bubbles with a diameter of 4.0 mm. The drag model of Ishii and
Zuber (1979) was used (equation 4.9).

In Figure 4.3 the average vertical liquid velocity profiles and the vertical liquid velocity
fluctuations of the standard case (case 0) are shown at a height of 0.255 m. As can be
seen in this figure, the time averaged results become approximately constant after about
200 s of calculation time.

In case 1 the effect of the grid size is tested. The grid sizes are reduced by a factor of two
for all directions. Figure 4.4 shows the average velocity profiles and the velocity
fluctuations. In this figure it can be seen, that average vertical liquid velocity and the
vertical liquid velocity fluctuations in the model with smaller grid sizes are lower. But the
differences between the velocity profiles of the case with smaller grid sizes and the
standard case are marginal. The results in this figure show, that the model is grid
independent.

In Figure 4.5 snapshots of the liquid phase velocity fields and the instantaneous iso-
surfaces of αg = 0.03 of case 0 and case 1 are displayed. As can be seen in this figure the
plume is more spread over the column when using a smaller grid. The liquid circulation is
about the same.
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Figure 4.3: Comparison of the simulated and experimental average liquid velocity profiles for the standard
case (see Table 4.1) at a height of 0.255 m and a depth of 0.075 m: Effect of the averaging period. Top:
average liquid velocity; middle: vertical liquid velocity fluctuations; bottom: horizontal liquid velocity
fluctuations.
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Figure 4.4: Comparison of the simulated and experimental average liquid velocity profiles for case 1
(see Table 4.1) at a height of 0.255 m and a depth of 0.075 m: Effect of the grid size. Top: average liquid
velocity; middle: vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.
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Figure 4.5: Snapshots of the liquid phase velocity fields and the instantaneous iso-surfaces of αg = 0.03
after 200 s for case 0 and 1 (see Table 4.1).

In case 2 the effect of the time step is tested. The time step is changed from 5.0.10-3 s to
2.5.0.10-3 s. In Figure 4.6 a snapshot of the liquid phase velocity field and the
instantaneous iso-surface of αg = 0.03 case 1 is presented. As can be seen in this figure
the plume is more spread over the column when using a smaller time step. The liquid
circulation is about the same.
In Figure 4.7 the simulation results of the average velocity and the velocity fluctuations
are shown. The average velocity is lower for the case with the smaller time step. The
velocity fluctuation profile in the vertical direction also shows lower values in the case
with small time step, which indicates an underprediction of the vertical plume dynamics.
The differences between the velocity fluctuation profile in the horizontal direction of the
standard case and the case with smaller time step is marginal.
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Figure 4.6: Snapshot of the liquid phase velocity field and the instantaneous iso-surface of αg = 0.03 after
200 s for case 2 (see Table 4.1).

Figure 4.8 shows the results of the simulations with and without LES turbulence model.
As can be seen in this figure the average velocity profiles of the case with LES are much
higher than in the case without LES. In the case in which LES is implemented the
effective viscosity has an extra term and has a higher value compared to the case without
LES. When the viscosity is higher, the movement of the plume is less and the average
velocity in the centre of the column is higher. The velocity fluctuations in the vertical
direction in the case with LES are lower than in the case without LES. For the horizontal
direction the velocity fluctuations are higher in the case without LES.

In Figure 4.9 a snapshot of the liquid phase velocity field and the instantaneous iso-
surface of αg = 0.03 of case 3 are presented. As can be seen in this figure the plume is
more evenly spread over the cross-sectional area of the column in the case without LES.
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Figure 4.7: Comparison of the simulated and experimental average liquid velocity profiles for case 2
(see Table 4.1) at a height of 0.255 m and a depth of 0.075 m: Effect of the time step. Top: average liquid
velocity; middle: vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.
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Figure 4.8: Comparison of the simulated and experimental average liquid velocity profiles for case 3
(see Table 4.1) at a height of 0.255 m and a depth of 0.075 m: Effect of LES. Top: average liquid velocity;
middle: vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.
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Figure 4.9: Snapshot of the liquid phase velocity field and the instantaneous iso-surface of αg = 0.03 after
200 s for case 3 (see Table 4.1).

4.6.2 Gas-liquid system with MUSIG model

The second Euler-Euler model used here relies on a two-fluid description. In this model
the MUSIG model was implemented in the gas phase, as described previously. The drag
model of Ishii and Zuber (1979) was used (equation 4.9).
The bubbles in the gas phase were divided into 10 equally sized bubble size groups from
0.0 - 10.0 mm. All bubbles were entering the column with a diameter of 4.0 mm, the
same diameter as in the gas-liquid model without MUSIG model. The break-up model
used was the default model of Luo and Svendsen (1996) and the calibration factor for
break-up had the default value of 1.0. For the coalescence model the default model of
Prince and Blanch (1990) was used and the calibration factor for coalescence had the
default value of 0.05.

Figure 4.10 shows the results of the average velocity profile and the velocity fluctuations
for the standard case. The results are compared to the results of the gas-liquid phase
without MUSIG model. The difference between model with and without MUSIG model
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Figure 4.10: Comparison of the simulated and experimental average liquid velocity profiles case 0 and 4 at
a height of 0.255 m and a depth of 0.075 m: Effect of MUSIG model. Top: average liquid velocity; middle:
vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15

x [m]

u z
,l 

[m
/s

] G-L
G-L with MUSIG
PIV

0.00

0.05

0.10

0.15

0.20

0.25

0.00 0.05 0.10 0.15

x [m]

u'
z,

l [
m

/s
] G-L

G-L with MUSIG
PIV

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.00 0.05 0.10 0.15

x [m]

u'
x,

l [
m

/s
] G-L

G-L with MUSIG
PIV



Chapter 4

154

is about 15 %. The difference between the velocity fluctuation profiles between the case
with and without MUSIG model is smaller. Therefore it can be concluded that the
MUSIG model has small influence on the flow in the bubble column.

Figure 4.11 shows a snapshot of the liquid phase velocity fields and the instantaneous
iso-surface of αg = 0.03 of case 4. The standard case contains more bubbles in the top of
the column. The bubble plume is the bottom of the column is about the same for the case
with and without MUSIG model.

Figure 4.11: Snapshot of the liquid phase velocity field and the instantaneous iso-surface of αg = 0.03 after
200 s for case 4 (see Table 4.1).

4.6.3 Gas-gas-liquid model

As was found in the previous section, the MUSIG model has small influence on the flow
in the bubble column. All bubbles in this model have the same velocity. When
equation 4.9 is used the drag force becomes independent of the bubble size, which is in
agreement with the constant rise velocity that is found for large bubbles as evident from
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Figure 4.2. For smaller bubbles however, the terminal velocity is smaller and another
drag relation should be used.

To investigate the effect of the different bubble rise velocity of smaller bubbles a third
Euler-Euler model is used. This is a three-phase gas-gas-liquid model or a three-fluid
model. The gas phase was divided into two groups, one with smaller bubble diameters of
2 mm and one with larger bubble diameters of 6 mm. Half of the gas volume fraction of
the bubbles at the inlet were 2 mm and the other half are 6 mm.

The bubbles in the small bubble phase were in the viscous regime (0 ≤ Re ≤ 500 to 1000).
The drag relation used in this phase is the relation given by Schiller and Nauman (1933),
equation 4.6. The bubbles in the large bubble phase were in the distorted regime
(500 - 1000 ≤ Re ≤ 1 to 2 x 105). For this regime the drag relation given by Ishii and
Zuber (1979), given by equation 4.9, was used.

In Figure 4.12 the average velocity profiles and the velocity fluctuations are shown. The
results are compared to the standard gas-liquid model. As can be seen in the figure, the
curve of the average liquid velocities of the gas-gas-liquid model lies lower than that of
the gas-liquid model. This is due to the fact that the small bubbles are modelled with a
different drag relation, which gives rise to lower slip velocities. This effect is confirmed
in Figure 4.13, which shows lower average velocities with a high maximum in the
middle. The oscillation of the plume is minor. The velocity fluctuation profile in the
vertical direction also shows lower values in the case with small diameters and a high
maximum in the middle. The velocity fluctuation profile in the horizontal direction shows
higher values in the case with small diameters.

Figure 4.14 shows snapshots of the liquid phase velocity fields and the instantaneous iso-
surface of αg = 0.03 of case 4 and 6. The bubble plume in the gas-gas-liquid model
contains less gas than in the standard case. The bubble plume in the model with small
bubble diameters shows hardly any movement of the bubble plume, as can also be seen in
the average velocity profiles and velocity fluctuations.
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Figure 4.12: Comparison of the simulated and experimental average liquid velocity profiles case 0 and 5 at
a height of 0.255 m and a depth of 0.075 m: Effect of number of gas phases. Top: average liquid velocity;
middle: vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.
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Figure 4.13: Comparison of the simulated and experimental average liquid velocity profiles case 0 and a
case 6 at a height of 0.255 m and a depth of 0.075 m: Drag relation. Top: average liquid velocity; middle:
vertical liquid velocity fluctuations; bottom: horizontal liquid velocity fluctuations.
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Figure 4.14: Snapshot of the liquid phase velocity field and the instantaneous iso-surface of αg = 0.02 after
200 s for case 5 (see Table 4.1) (left) and case 6 (see Table 4.1) (right).

4.7 Results break-up and coalescence

The default break-up model in MUSIG is the model of Luo and Svendsen (1996). The
default coalescence model is the model of Prince and Blanch (1990).
In order to investigate the influence of the coalescence model, the default model was
replaces with the model of Chesters (1991), studied in Chapter 3:

2

2
Cexp Weλ  = −  

 (4. 30)

The bubble column used for the simulation in CFX was the same column described in the
previous section. At different heights in the column (0.10, 0.20 and 0.30 m) the bubble
size distribution is determined and the results are compared. The calibration factor for
coalescence was set to a value of 1.0 in both cases.
The same column was also simulated with the discrete bubble model (see Chapter 3). In
this model the coalescence model of Chesters (1991) is incorporated. In all three models
the break-up model of Luo and Svendsen (1996) used.
In Figure 4.15 the results of the computed bubble size distributions are presented.
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Figure 4.15: Bubble size distribution for three different cases at three different heights: Top: 0.10 m,
middle: 0.20 m; bottom: 0.30 m.
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In this figure it can be seen, that the bubbles in the DBM are the smallest and the bubble
size distribution is the narrowest. The bubbles in the model of Prince and Blanch (1990)
are the largest and the bubble size distribution is the widest. The coalescence rate for this
model is clearly larger than that of the other two models. This can also be concluded from
the change in the slope at larger bubble diameters. In CFX the bubble size increases more
with increasing height in the column, compared with the DBM.

4.8 Conclusions

In this Chapter three different Euler-Euler models are used to describe two-phase flows in
bubble columns: A gas-liquid model, a gas-gas-liquid model and a gas-liquid model with
the MUSIG model for the gas phase. For the simulations of the Euler-Euler model the
commercial code CFX 4.4 is used.  In all three Euler-Euler models a LES-turbulence
model is incorporated. The MUSIG model, including population balances with a break-
up and coalescence model is used to study the bubble size distribution in the column. To
study the effect of the different rise velocities of the bubbles a three-phase gas-gas-liquid
system is simulated. The gas phase is divided into two groups, one with smaller bubble
diameters of 2 mm and one with larger bubble diameters of 6 mm with different drag
relations. The results of all three models are compared with experimental PIV results
measured by Deen (2001) in a square bubble column filled with distilled water.
Good agreement was reached comparing the simulation results of the gas-liquid model to
the experimental results. When using a smaller grid size the velocity and velocity
fluctuations are lower, but the differences between the velocity profiles of the case with
smaller grid sizes and the standard case are marginal.
The agreement between the simulation results and experimental results for the Euler-
Euler model is better than for the Euler-Lagrange model (Chapter 3). This can probably
be due to the differencing scheme, which is different in the Euler-Euler and Euler-
Lagrange model. Another reason can be the use of the encounter model in the Euler-
Lagrange model.

When the LES model is implemented the velocity and velocity are higher than in the case
without LES. The effective viscosity in case of LES is higher due to the turbulence
viscosity. In the gas-liquid model with MUSIG model the bubbles in the gas phase are
divided into 10 equally sized bubble size groups from 0.0 - 10.0 mm. The break-up model
used was the default model of Luo and Svendsen (1996), the coalescence model the
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default model of Prince and Blanch (1990). The difference between the models with and
without MUSIG model is very small because all size groups have the same rise velocity
and thus the same drag relation. The curve of the average liquid velocities of the gas-gas-
liquid model lies lower than that of the gas-liquid model. This is the effect of the smaller
bubbles with a different drag relation. In this case the average velocity is lower with a
high maximum in the middle of the column. The movement of the bubble plume is very
weak, as can be concluded from the velocity fluctuations.
Simulation results of two different coalescence models, Prince and Blanch (1990) and
Chesters (1991) are compared with simulation results of the DBM with the coalescence
model of Chesters (1991) in a square column. In all models the break-up model of Luo
and Svendsen (1996) is incorporated. In CFX the bubble size increases more with
increasing height in the column.
The bubbles in the DBM are the smallest and the bubble size distribution is the
narrowest. The bubbles in the model of Prince and Blanch (1990) are the largest and the
bubble size distribution is the widest. As said in Chapter 3 the results of the DBM with
the coalescence model of Chesters (1991) and the break-up model of Luo and
Svendsen (1996) shows the best agreement with experimental results. The results of the
Euler-Euler model with the models of Chesters (1991) and Luo and Svendsen (1996) are
the best in agreement with the results of the DBM.
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Chapter 5

IMAGE ANALYSIS IN PSEUDO 2D COLUMN

Abstract

In this chapter an imaging technique will be used to measure the bubble size distribution
and mean diameter in a lab-scale pseudo 2D bubble column at different heights and
different flow rates.
In distilled water the mean diameter increases with increasing height and with increasing
flow rate in the column because of coalescence of the bubbles. The bubble size
distribution moves to larger diameters with increasing height. The same is observed with
increasing flow rate.
Octanol (2.4.10-4 M) added to the distilled water reduces the extent of coalescence. The
mean diameter shows a weak increase with increasing height in the column which can be
attributed to the decrease in hydrostatic pressure with increasing height. The mean
diameter decreases with increasing flow rate, because only break-up occurs and
coalescence is inhibited.
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5.1 Introduction

Bubble columns are used as gas-liquid reactors in a variety of industrial processes.
Despite the widespread applications of bubble columns and substantial research efforts,
detailed knowledge on the hydrodynamics is still lacking. Bubble columns have been
subject of research for many years and various researchers developed CFD models for
gas-liquid bubble columns that can provide detailed information about the prevailing
hydrodynamics.
In order to validate the CFD models, the simulation results should be compared to
experimental data. For the validation of the break-up and coalescence models in both the
Euler-Euler and Euler-Lagrange models, information about the bubble size distribution
and the velocity maps of both phases are typically of interest.
Bubble sizes can be measured with different techniques. The most frequently used
techniques are probe and imaging techniques. The probe techniques are known to
influence the gas-liquid flow pattern, which is a disadvantage of this technique. The
advantages of the imaging technique are the non-intrusiveness, the technique is not
expensive and it maps the situation in the column without having to reconstruct the image
from measured data.  A disadvantage of this technique is that it can only be applied in
pseudo 2D systems. Despite of this disadvantage the imaging technique has been applied
in many studies for measuring bubble sizes (Pacek et al., 1994; Machon et al., 1997;
Lage et al., 1999). Recent studies (Bröder et al., 2002 and Kluytmans, 2003) used a high
speed camera to capture images. In all cases images are captures from a 2D column. The
images are analysed and the bubble sizes are measured in different ways. In this chapter
the imaging technique is used in a pseudo 2D column to measure the bubble size
distribution and the bubble mean diameter.

5.2 Image analysis procedure

The image analysis described in this chapter is used to measure the bubble size
distribution and the mean diameter of bubbles in a pseudo 2D bubble at different heights
in the column and at different superficial gas velocities. The bubble sizes are determined
by measuring ‘bubble shadows’ in shadow images, captured from the bubbles in the
column with a digital camera. The analysis of the images is off line by the software called
VisiSize Solo (AEA Technology, England).
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A CCD camera generally records 8 bit images, which correspond to 255 grey levels,
where 0 is black and 255 is white. Only images with sufficient contrast between the gas
and the liquid can be analysed. The images in the case, where the column is illuminated
from behind, have a light background with the bubbles appearing as dark objects in the
field of view. It is important for the analysis that the edges of the bubbles are dark and
distinct from the background. However, light areas in the centre of the bubble images will
not affect the analysis. For both diameter analysis, the illumination of the image
background should be as uniform as possible. The illumination of the image background
must also be within a certain range for accurate analysis. To ensure that the illumination
on the image is correct the peak in the background intensity histogram (Figure 5.1)
should lie between the grey levels of 140 and 240 and should be reasonably narrow.

Figure 5.1: Background intensity histogram.

The VisiSize software uses a simple thresholded segmentation algorithm to identify and
measure bubbles in an image. The images are thresholded in order to distinguish between
the bubbles and the illumination background. The threshold level is the grey level above
which pixels in the image can be assumed to be in the background. A threshold is chosen
between 0 and 255; all pixels lower in value (darker) than the threshold are considered to
belong to a bubble. The right threshold value for the measurements can be determined by
using the background intensity histogram. In this histogram the grey level value is taken
at which the background peak starts to rise. This is the minimum background level B.
Since the profile of a small bubbles may not reach full darkness, in order to count small
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bubbles, it is essential to set the threshold T just slightly below the minimum background
level B, so a value of 10 is subtracted from the minimum background level B. But T must
not be set higher than B, otherwise elements of the background will be identified as
objects. Therefore it is important to choose the value of T carefully. A typical grey level
histogram of an image looks like:

Figure 5.2: Grey level histogram for value of T.

The large peak in Figure 5.2 represents the background. The small peak represents the
dark interiors of the larger bubbles (there may not be a foreground peak if the dark areas
represent less than 1% of the image). The settings of T as shown will count most of the
small objects.
The binary threshold value T has an effect on the results, and hence on the accuracy. It is
very important to have always the same value for the threshold for the accuracy of the
calculation of the bubble diameter. To understand the effect of the value of the
threshold T, consider the grey level across one line of a typical image, that intersects
three bubbles:

When T in Figure 5.3 has a lower value, the bubble sizes will be smaller (bubble 1 and 2)
or bubbles are not counted (bubble 3).

T
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Figure 5.3: Effect of the value of threshold T.

The image is scanned from top to bottom, identifying dark segments on each line and
associating them with the segments on the previous line. When a bubble is complete
calculations are performed on the bubble.

For circular bubbles the diameter calculation is straightforward. For noncircular shapes,
there are four different ways of characterising the bubble size (they are all equal for a
spherical bubble). In the functions below A is the pixel area, P is the pixel perimeter and
C is the microns/pixel calibration, also called the magnification.

Assuming that the bubble is a circle the pixel area is given by:

2

2
A

pixel
dA π  =   

(5. 1)

where dA is the bubble diameter based on the pixel area Apixel

Therefore the equivalent diameter (in microns) is given by:
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Similarly using the perimeter Ppixel, then for a circle Ppixel is given by:

pixel PP dπ= (5. 3)

where dp is the bubble diameter based on the pixel perimeter Ppixel

The equation for the equivalent circular perimeter is:

pixel
P

P
d C

π
= ⋅ (5. 4)

The Heywood diameter dH is the smallest circle enclosing the particle (see Figure 5.4).

Figure 5.4: Definition of different diameters.

If the bubble is a perfect circle then dA=dP such that dA/dP=1. The ratio dA/dP is a measure
of the sphericity of the bubble and is computed as the shape factor in VisiSize Solo.
Therefore using the equations 5.2 and 5.4 the sphericity is given as:
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The software actually computes the shape factor as:
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For a whole sequence of images the software can determine the bubble size distribution
and the number mean diameter, the volume mean diameter and the Sauter mean diameter,
respectively given by:
Number mean diameter (average diameter of all bubbles in the sample):

10
1

1 BN

B

d d
N =

= ∑ k
k

(5. 7)

Volume mean diameter (diameter of a bubble whose volume, if multiplied by the total
number of bubbles, equals the total volume of the sample):
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(5. 8)

Sauter mean diameter (diameter of a bubble whose ratio of volume to surface area is the
same as the complete sample):
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(5. 9)

5.2.1 Image analysis parameter

Before starting any bubble distribution analysis, it is important that the image analysis
parameters are set correctly. To set these parameters, one single image with a perfect
circle is used for the purpose of callibration.
In these experiments a perfect circle with a diameter of exactly 15 mm is used to set the
parameters. The area of the analysed images 0.09 x 0.09 cm. It is not possible to take a
smaller area, because the lens cannot make sharp images closer to the bed. In this case a
bubble of 1 mm has a diameter of 6 pixels and an area of 25 pixels. Assuming the error is
half a pixel of the outer ring, the error of a bubble of 1 mm is 17.6 %. For a bubble of
4 mm (mean diameter of the bubbles in the column) the error is 4.4 %.
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The pixel area of the smallest bubble, which will be measured in the image, the minimum
pixel area, is set at 10 pixels. Bubbles, which appear in the same position on the screen in
five consecutive images, are rejected. So any marks on the camera or lens will not be
counted as real bubbles and are omitted form the bubble size distribution.

The bubbles images are overlapping each other in the captured image, because the
bubbles are bouncing at the moment the image is captures or two bubble lay (partly)
behind each other. In the two-dimensional image, this last point is seen as two bubbles
overlapping each other. The higher the hold-up in the bubble column, the more bubbles
are overlapping. VisiSize cannot distinguish the individual bubbles in a cluster of bubbles
and will give only one (too large) diameter for these bubbles. To get accurate results a
validation algorithm is used. For this algorithm a minimum shape factor is determined.
Bubbles or clusters of bubbles with a shape factor lower than the minimum are discarded.
The shape factor determines the degree of shape rejection used. The higher the value, the
more spherical a bubble needs to be in order to be analysed.

In Figure 5.5 the Sauter mean diameter of a picture is calculated with different values of
the minimum shape factor. Images are captured for 8 sec (2096 images) at a flow rate of
4.17.10-5 m3/s (superficial gas velocity = 7.10-3 m/s; hold-up = 2.91 %). At low values of
the shape factor also clusters of bubbles are analysed. When increasing the shape factor,
these clusters are rejected and the Sauter mean diameter has a lower and more accurate
value. At the shape factor > 0.95 the Sauter mean diameter increases again. In this case
only a very few bubbles are analysed. When one of these bubbles is a large spherical
bubble this will give a large Sauter mean diameter.
In order to remove all clusters of bubbles the shape factor was set at a value of 0.75.
The disadvantage of this shape factor is that some large bubbles are not analysed. The
sphericity of large bubbles is sometimes lower than 0.75. Therefore the mean diameter
will be somewhat lower than the actual value.

5.2.2 Accuracy

After calibration and determination of the shape factor some tests were done to check
whether the VisiSize Solo software gives good values for the diameter of the bubbles. In
these tests two sheets are used with printed circles and ellipses with known diameters. In



Image analysis in pseudo 2D column

171

one sheet the circles and ellipses are printed separately and in the other sheet the circles
are partly overlapping each other (see Figure 5.6).

Figure 5.5: Experimental calculation of Sauter mean diameter at different shape factors.

Figure 5.6: Sheets for testing overlap on the results of the measured bubble diameter.

In the case of overlapping circles the larger circles show more overlap than the smaller
circles. The same situation can be seen in bubble columns: Larger bubbles show more
overlap than smaller bubbles. Images are captured from both sheets and the images are
analysed in VisiSize. In both cases VisiSize overestimates the circle sizes with about 8-10
%. So the rejection of clusters of bubbles because of overlap of the bubbles gives no
larger error in the determination of the bubble size.

In order to be assured that the correct value of the bubble size distribution and the mean
diameter is determined, the number of images/bubbles needs to be analysed. Images are
captured for 8 sec (2096 images) at a flow rate of 4.17.10-5 m3/s (superficial gas
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velocity = 7.10-3 m/s; hold-up = 2.91 %). The mean diameters are determined after 200,
400, 600 etc. images. This value is compared with the previous determined value. If the
deviation between the present and previous value is less than 1 %, it is assumed that the
mean diameter has a constant value, which is independent of the remaining images.
Usually, the constant value is obtained after analysing about 600 images or 10.000 bubble
images, as shown in Figure 5.7.

Figure 5.7: Experimental determination of minimum number of images (superficial gas
velocity = 7.10-3 m/s; hold-up = 2.91 %.

5.3 Experimental set-up

The imaging technique described in this chapter is used to study the bubble size
distribution in a pseudo 2D column consisting of two parallel (distance 30 mm) plates
(see Figure 5.8) with a height of 1.5 m and a width of 0.2 m. The column is filled with
distilled water at a height of 1.4 m and the gas is fed at the bottom of the column through
a porous plate (with pores ranging from 40-100 µm) (see Figure 5.9).

Digital images of the front side of the column are recorded with a high-speed Dalsa
CA-D6-0512W camera (Tech5, The Netherlands) at a rate of 262 frames per second with
a 50.0 mm lens. The camera resolution is 532H x 516V pixels. During the recording time,
the images are stored in the memory of a PC. The working memory size of 1 GB limits
the recording time to approximately 14 seconds. Digital images of the front side of the
column are recorded with a high-speed Dalsa CA-D6-0512W camera (Tech5, The
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Netherlands) at a rate of 262 frames per second with a 50.0 mm lens. The camera
resolution is 532H x 516V pixels. During the recording time, the images are stored in the
memory of a PC. The working memory size of 1 GB limits the recording time to
approximately 14 seconds. The data is stored from the memory to the hard disk of a PC.
The images are analysed off line with the software package VisiSize Solo (AEA
Technology, England).

Figure 5.8: Experimental set-up of pseudo 2D column for image analysis.

Figure 5.9: Bottom plate of the pseudo 2D column.

Because of the high frame rate and thus the fast shutter speed of the camera, enough light
should be provided to capture the images with sufficient contrast. The illumination of the
background should be as uniform as possible. On both sides of the column 3 halogen
lights of 500 W each are used, which illuminated the column via indirect lighting on a
white projector screen behind the column.
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5.4 Experiments

The bubble size distribution and the number, volume and Sauter mean diameter were
determined for different gas flow rates (superficial velocity) and for different heights in
the column.
The overall gas hold-up is determined by measuring the liquid surface level expansion.
For all measurements the column is filled with distilled water at the same height. All
measurements were carried out twice to test the accuracy of the measurements.

First the measurements have been carried out in distilled water for 6 different flow rates,
shown in Table 5.1.

Table 5.1: Flow rates, hold-up and superficial gas velocity of video measurements with distilled water.

experiment flow rate [m3s-1] hold-up [%] superficial gas
velocity [m s-1]

1 0.83.10-5 0.73 1.39.10-3

2 1.67.10-5 1.17 2.78.10-3

3 2.50.10-5 2.05 4.17.10-3

4 3.33.10-5 2.55 5.56.10-3

5 4.17.10-5 2.91 6.94.10-3

6 5.00.10-5 3.42 8.33.10-3

It was not possible to measure at higher superficial gas velocity, because in that case
there are too many clusters of bubbles and hardly any separate bubbles could be
distinguished on the image.

For all experiments the measurements were carried out at 5 different heights in the
column: 0.15 m, 0.25, m, 0.50 m, 0.75 m, 1.00 m. It was not possible to measure closer to
the nozzle, because no separate bubbles could be distinguished on the images due to
excessive bubble-bubble overlap.
To inhibit coalescence the same measurements were performed in distilled water with
octanol. Total coalescence inhibition is reached at 10-4 kmol m-3 (Zahradník et al, 1999).
The column is filled with 8 litre distilled water, so 0.104 g octanol is needed to reach total
coalescence inhibition. In these measurements 0.25 g octanol was used, to be sure that
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total coalescence inhibition was reached. The surface tension of water with octanol was
0.0646 N/m.
The measurements were carried out at the same heights as for distilled water, but at
different flow rates (Table 5.2).

Table 5.2: Flow rates, hold-up and superficial gas velocity of video measurements with distilled water and
octanol.

experiment flow rate [m3s-1] hold-up [%] superficial gas
velocity [m s-1]

7 0.42.10-3 0.36 0.69.10-3

8 0.83.10-3 0.66 1.39.10-3

9 1.25.10-3 0.95 2.08.10-3

10 1.67.10-3 1.75 2.78.10-3

It was not possible to measure at higher superficial gas velocity in the case of distilled
water with octanol. The bubbles are much smaller compared to the bubbles in distilled
water. The hold-up in both cases is about the same, so the column contains much more
bubbles in the case of distilled water with octanol.

First some measurements were performed for a few hours to be sure that the bubble size
distribution and mean diameter reached constant values. In Figure 5.10 the results of the
Sauter mean diameter vs the time can be seen. The Sauter mean diameter does not rise in
time, and the error is ± 2%. It can be concluded that the amount of octanol in the water
remains sufficiently high to inhibit coalescence effectively.

5.5 Results

In Figure 5.11 the results of the Sauter mean diameter at a superficial gas velocity of
5.56.10-3 m s-1 in distilled water are shown at different heights in the column. Also the
duplicate measurements can be seen in this Figure. The difference between the first
measurements and the duplicates is maximum 2 %.
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Fgure 5.10 Experimentally determined Sauter mean diameter vs. time for distilled water and octanol.

Figure 5.11: Experimentally determined Sauter mean diameter vs. height for a superficial gas velocity
of 5.56.10-3 m s-1.

5.5.1 Distilled water

Figure 5.12 shows the number mean, volume mean and Sauter mean diameter vs. the
height in the column for all applied flow rates. In Appendix 5A, Table 5A.1 the values
obtained for the mean diameter at different heights are given. It can be concluded from
the definition of the three different mean diameters, that number mean diameter < volume
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mean diameter < Sauter mean diameter. This can also be seen in Table 5A.1 and by
comparing the results shown in Figure 5.12.
The mean diameter increases with increasing height in the column. The increase of
diameter is due to decreasing hydrostatic pressure and because of coalescence. The
increase in diameter because of pressure is about 3% going from 15 cm to 100 cm. The
higher their position in the column, the longer bubbles generally have resided in the
column and the more opportunity they have had to coalesce. This explains why the Sauter
mean diameter increases with height in the column.
The mean diameter increases with increasing flow rate. This is due to the fact that when
the flow rate is higher, the gas fraction increases and the bubbles are closer together.
Therefore more collisions between the bubbles occur, the chance for coalescence is
higher and the diameter of the bubbles becomes larger.
For low flow rates (0.83.10-3 m3 s-1, 1.67.10-3 m3 s-1, 2.50.10-3 m3 s1), the slope of the line
in the lower part of the column is steeper than in the higher part. The mean diameter of
the bubbles increases more with increasing height in the lower part of the column. In the
higher part of the column, the mean diameter is almost constant. In the lower part of the
column the bubbles stay together in a plume (see Figure 5.13). The bubbles are close
together and they collide very often and coalescence can occur. In the higher part of the
column, the bubbles are spread through the whole column and no coalescence is
observed. The hold-up is low and therefore there is more space between the bubbles. The
bubbles do not collide very often and the chance for coalescence is lower.
Some differences can be seen between low flow rates (0.83.10-3 m3 s-1, 1.67.10-3 m3 s-1,
2.50.10-3 m3 s1) and high flow rates (3.33.10-3 m3 s-1, 4.17.10-3 m3 s-1, 5.00.10-3 m3 s-1). At
high flow rates the mean diameter increases with increasing diameter. As observed in
Figure 5.13 the bubbles only stay together in a plume for the first 0.25 m. For
heights > 0.25 m the bubbles are spread over the whole column. The hold-up is high and
the bubbles are close together in the whole column. The bubbles collide and the chance
for coalescence to occur is high in the whole column.

In Figure 5.14 the bubble size distribution at a superficial gas velocity of 5.56.10-3 m s-1 at
different heights in the column can be seen.
The bubble size distribution appears to be approximately Gaussian:
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Figure 5.12: Experimental calculation of the mean diameter vs. height for different flows for distilled
water. Top: number mean diameter; middle: volume mean diameter; bottom: Sauter mean diameter.
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Figure 5.13: Experimental images of bubble plume in pseudo 2D column. Left: superficial gas velocity =
1.39.10-3 m s-1; right: superficial gas velocity = 5.56.10-3 m s-1.

Figure 5.14: Experimentally determined bubble size distribution for distilled water at a superficial gas
velocity of 5.56.10-3 m s-1.
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Table 5A.2 the standard deviation is given for the number size distribution for all flow
rates and all heights in the column. In Appendix 5A, Table 5A.3 the same is reported for
the volume size distribution.
As can be observed in Figure 5.14 and Table 5A.2 and 5A.3 the bubble size distribution
moves to larger diameters, when increasing the height. The bubble size distribution is
narrower and the maximum is higher in the top of the column. The total volume of the
bubbles at the different heights in the column is equal, so the area under the distribution
curve is the same for all different heights. As already explained the number of larger
bubbles present in the top is higher than in the lower part of the column. Therefore the
total number of bubbles in the top is lower and the number of larger bubbles in the top is
relatively higher. Thus the maximum of the bubble size distribution is higher when
increasing the height and the peak is narrower.

Figure 5.15 shows the bubble size distribution at a height of 0.50 m at different flow
rates. As observed in this figure, the bubble size distribution moves to larger diameters
when increasing the flow rate. The bubble size distribution is wider and the maximum
decreases with increasing flow rates. This is due to the fact that at high flow rates more
bubbles are present in the column, so more collisions between the bubbles occur and the
chance for coalescence is higher. Therefore the number of larger bubbles is higher at
higher flow rates and the bubble size distribution moves to larger diameters. At higher
flow rates, larger bubbles are present, but also small bubbles, which did not coalesce.
Thus the bubble size distribution is wider at higher flow rates and the maximum
decreases.

Figure 5.15: Experimentally determined bubble size distribution for distilled water at different gas flows.
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5.5.2 Distilled water and octanol

Figure 5.16 shows the number mean, volume mean and Sauter mean diameter vs. the
height in the column for all flow rates. In Appendix 5A, Table 5A.4 the values for the
mean diameter of all flow rates at different heights are given.
The initial bubble diameter of the bubble coming into the column was 1.4 mm. The mean
diameter shows a weak increase with increasing height in the column. This increase is
probably only due to the decrease in hydrostatic pressure with increasing height.
The mean diameter decreases with increasing flow rate. This is the opposite for the case
when only distilled water is used. In the case of water with octanol coalescence is
inhibited, so when bubbles collide no coalescence, but bouncing will occur. When the
flow rate is higher, more bubbles are present in the column and they cause more
turbulence and more eddies. The number of collisions between bubbles and eddies is
larger and the chance for breaking of bubbles is larger.

In Figure 5.17 the bubble size distribution at a superficial gas velocity of 1.39.10-3 m s-1 at
different heights can be seen. Also in this case the Gaussian distribution function is used
to describe these bubble size distributions.
In Appendix 5A, Table 5A.5 the standard deviation is given for the number size
distribution for all flow rates and all heights in the column. In Appendix 5A, Table 5A.6
the same is reported for the volume size distribution.
As can be observed in Figure 5.14 and Table 5A.5 and 5A.6 the bubbles increase a little
when increasing the height, but this is only due to the decreasing hydrostatic pressure.

Figure 5.18 shows the bubble size distribution at a height of 0.50 m at different flow
rates. As observed in this figure, the bubble size distribution moves to smaller diameters
when increasing the flow rate. This is due to the fact that at high flow rates more bubbles
are present in the column, so there is more turbulence and more eddies and more
collisions between the bubbles and the eddies. Therefore the chance for break-up of
bubbles is higher and the number of small bubbles is higher at higher flow rates. The
bubble size distribution moves to smaller bubble diameters. At higher flow rates, smaller
bubbles are present, but also larger bubbles, which did not break. Thus the bubble size
distribution is wider at higher flow rates and the maximum decreases.
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Figure 5.16: Experimental calculation of the mean diameter vs. height for different flows for distilled water
and octanol. Top: number mean diameter; middle: volume mean diameter; bottom: Sauter mean diameter.
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Figure 5.17: Experimentally determined bubble size distribution for distilled water and octanol at a
superficial gas velocity of 1.39.10-3 m s-1.

Figure 5.18: Experimentally determined bubble size distribution for distilled water and octanol at different
gas flows.
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longer bubbles generally have resided in the column and the more opportunity they have
had to coalesce.
The mean diameter increases with increasing flow rate. The higher the flow rate, the
higher the gas fraction. Therefore more collisions between the bubbles occur, the chance
for coalescence is higher and the diameter of the bubbles becomes larger.
The bubble size distribution moves to larger diameters, when increasing the height. The
same is observed increasing the flow rate.

In distilled water with octanol (2.4.10-4 M) the mean diameter shows a weak increase
with increasing height in the column due to the decrease in hydrostatic pressure with
increasing height.
The mean diameter decreases with increasing flow rate. When the flow rate is higher,
more bubbles are present in the column and they produce more turbulence and more
eddies. The number of collisions between bubbles and eddies is larger and the chance for
breaking of bubbles is larger.
The bubble size distribution moves a little to larger diameters when increasing the height
and moves to smaller diameters when increasing the flow rate.
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Appendix 5A: Experimental results of the mean diameter and standard
deviation

Distilled water

Table 5A.1: Experimental results mean diameter with distilled water at different flow rates and different
heights.

flow rate
[m3/s]

mean
diameter

[mm]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.83.10-5 number 2.33 2.56 3.00 3.40 3.45
volume 2.68 2.89 3.23 3.63 3.69
Sauter 3.08 3.27 3.52 3.93 3.99

1.67.10-5 number 2.77 2.95 3.30 3.41 3.50
volume 3.14 3.28 3.56 3.64 3.70
Sauter 3.58 3.68 3.89 3.93 3.97

2.50.10-5 number 2.92 3.27 3.84 3.85 3.82
volume 3.20 3.55 4.08 4.06 4.00
Sauter 3.56 3.90 4.38 4.36 4.26

3.33.10-5 number 3.09 3.46 3.67 4.02 4.29
volume 3.37 3.74 3.94 4.24 4.50
Sauter 3.72 4.09 4.29 4.53 4.80

4.17.10-5 number 3.19 3.32 3.74 3.90 4.36
volume 3.44 3.56 3.94 4.16 4.57
Sauter 3.78 3.88 4.22 4.41 4.87

5.00.10-5 number 3.22 3.63 3.90 4.17 4.33
volume 3.50 3.92 4.12 4.42 4.54
Sauter 3.84 4.30 4.43 4.74 4.84

Table 5A.2: Standard deviation for number size distribution for distilled water.
flow rate
[l/min]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.83.10-3 θx 0.28 0.57 0.51 0.52 0.53

1.67.10-3 θx 0.36 0.50 0.54 0.50 0.50
2.50.10-3 θx 0.38 0.52 0.54 0.51 0.55

3.33.10-3 θx 0.41 0.52 0.56 0.53 0.53

4.17.10-3 θx 0.45 0.59 0.53 0.56 0.59

5.00.10-3 θx 0.44 0.55 0.56 0.58 0.54
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Table 5A.3: Standard deviation for volume size distribution for distilled water.
flow rate
[l/min]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.83.10-3 θx 0.58 0.56 0.55 0.62 0.64

1.67.10-3 θx 0.67 0.63 0.59 0.65 0.66

2.50.10-3 θx 0.64 0.68 0.71 0.66 0.67

3.33.10-3 θx 0.64 0.70 0.72 0.70 0.78

4.17.10-3 θx 0.67 0.66 0.69 0.73 0.75

5.00.10-3 θx 0.72 0.74 0.78 0.79 0.76

Distilled water and octanol

Table 5A.4: Experimental results mean diameter with distilled water and octanol at different flow rates and
different heights.

flow rate
[l/min]

mean
diameter

[mm]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.25 number 1.46 1.44 1.51 1.59 1.63
volume 1.78 1.75 1.82 1.90 1.93
Sauter 2.19 2.15 2.22 2.30 2.31

0.50 number 1.41 1.44 1.49 1.47 1.50
volume 1.66 1.68 1.77 1.75 1.76
Sauter 2.00 2.00 2.13 2.11 2.10

0.75 number 1.30 1.42 1.52 1.54 1.67
volume 1.55 1.64 1.78 1.82 1.94
Sauter 1.88 1.92 2.11 2.18 2.28

1.00 number 1.24 1.22 1.35 1.37 1.25
volume 1.43 1.40 1.53 1.56 1.43
Sauter 1.68 1.64 1.77 1.81 1.69
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Table 5A.5: Standard deviation for number size distribution for distilled water and octanol.

flow rate
[l/min]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.42.10-3 θx 0.40 0.63 0.61 0.62 0.60
0.83.10-3 θx 0.29 0.51 0.59 0.59 0.58
1.25.10-3 θx 0.37 0.55 0.68 0.67 0.67
1.67.10-3 θx 0.34 0.62 0.46 0.43 0.52

Table 5A.6: Standard deviation for volume size distribution for distilled water and octanol.
flow rate
[l/min]

0.15 m 0.25 m 0.50 m 0.75 m 1.00 m

0.42.10-3 θx 0.74 0.76 0.71 0.71 0.73

0.83.10-3 θx 0.78 0.75 0.72 0.71 0.72

1.25.10-3 θx 0.95 0.91 0.94 0.92 0.96

1.67.10-3 θx 1.00 0.88 0.78 0.92 1.52
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

Abstract

In this chapter the concluding remarks of this work are presented. The conclusions
regarding the hydrodynamics in bubble columns studied with different models will be
given. The imaging techniques used to validate the CFD models will also be discussed. In
the final section an outlook on further research in the field of bubbly flows will be given.
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6.1 Conclusions

Bubble columns are used in a variety of industrial processes. Despite the widespread
application of bubble columns and substantial research efforts on their behaviour,
detailed knowledge on the fluid dynamics is still lacking.
The objective of this thesis was to develop and improve computational fluid dynamics
models (CFD models) that describe the time-dependent flow behaviour of gas-liquid
flows in bubble columns. The models have been validated with experimental data.

Due to the complexity of the gas-liquid flow in a bubble column it appears almost
impossible to develop a generalised computational fluid dynamic (CFD) model that
accounts for all hydrodynamic phenomena in bubble columns. Therefore a ‘hierarchy of
models’ is employed. This ‘hierarchy of models’ consists of a set of three types of CFD
models and each model is used to study specific hydrodynamic phenomena.

Interface tracking models are the most detailed models in the ‘hierarchy of models’. The
interface tracking models used in this thesis are the 2D volume of fluid (VOF) model and
the 2D and 3D front tracking model. These models have been used to study in detail the
time-dependent behaviour of large bubbles rising in an initially quiescent liquid. The
models solve the incompressible Navier-Stokes equations on a staggered Cartesian mesh
using a one-fluid formulation to obtain the gas and liquid flow fields. The Youngs’ VOF
method reconstructs the gas-liquid interface from the local liquid fraction and the
interface is ‘tracked’ through the Eulerian mesh. A known drawback of the Youngs’ VOF
model is the poor calculation of the surface tension force by the continuum surface force
model (Brackbill et al., 1992), especially at points where the interface has a strong
curvature compared to the computational mesh size. In this thesis a new surface tension
model, the tensile force model, has been introduced into the VOF model. With this model
is it possible to simulate very small bubbles (down to 1 mm diameter) in an air-water
system. The front tracking method uses an unstructured dynamic mesh to represent the
interface surface and tracks this interface explicitly by the interconnected marker points.
These models are used to calculate the forces acting on a bubble, i.e. the drag, lift and
virtual mass forces, by using a force balance for a single bubble. The results are
compared to relations from literature. The relations for these forces can be used as
closure relations for less detailed models such as Euler-Lagrange and Euler-Euler models.
The drag coefficients for small bubble diameters (< 2 mm), calculated with the 2D VOF
model, are very close to the relations of Tomiyama (1998) and Ishii & Zuber (1979). For
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larger bubble diameters (> 2 mm) the drag coefficients are very close to the relation of
Grace et al. (1976). The drag coefficients in the 3D front tracking model for bubbles
larger than 7 mm are higher than in the 2D VOF model where the equation for a sphere is
used to calculate the drag coefficient. When the equation for a cylinder is used to
calculated the drag coefficient for the 2D VOF model, the drag coefficients of the 3D
front tracking model and the 2D VOF model are close together.
The virtual mass force can only be calculated for the first part of the simulation when the
bubble accelerates. For the 2D VOF model the value obtained for the virtual mass
coefficient is typically around 1.1. This value for bubbles in 2D systems is in agreement
with literature (Auton, 1988; Lamb, 1932). For the 3D front tracking model the virtual
mass coefficient is around 0.6, the value for 3D systems (Auton, 1983). The deviation
from the theoretical value of spherical bubbles is probably caused by minor deformation
of the bubble.
The lift force was studied using a 2D front tracking model. A bubble in a linear shear
field does not rise in a straight line, but oscillates in the horizontal direction and moves to
one side of the column. A bubble of 8 mm moves to the side with the highest slip velocity
and a bubble of 10 mm moves to the side with the lowest slip velocity. When using a
lower shear rate, the movement of the bubble is smaller. The horizontal velocity shows
large oscillations due to the oscillating movement of the bubble in the column and is
oscillating between a negative and a positive value. Due to the change in horizontal
velocity, the lift coefficient changes accordingly. The average lift coefficient for a bubble
of 8 mm is positive and the average lift coefficient for a bubble of 10 mm is negative.
The values are higher than the values reported in literature (Tomiyama, 1998). The shape
of a bubble of 8 mm is approximately ellipsoidal during the oscillations. The shape of a
bubble of 10 mm changes during the oscillations. The bubble is ellipsoidal and during the
turn the shape changes to wobbling. This is probably the reason for the observed
differences in the lift coefficient.

The next level in the ‘hierarchy of models’ is the Euler-Lagrange model, also called
discrete bubble model (DBM). A discrete bubble model was used to investigate the
hydrodynamics, coalescence and break-up occurring in bubble columns. The 3D DBM
code, developed by Delnoij (1999), was extended to incorporate models describing the
coalescence and break-up along with a closure model for the turbulence. The model
incorporates all relevant forces acting on a bubble in a liquid.
Simulation results of the model with LES are compared to experimental particle image
velocimetry (PIV) results measured by Deen (2001) in square column. The velocity and
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velocity fluctuations of the simulation are predicted somewhat too high compared to the
PIV results. The difference between the simulation results and the experiments is 7 %.
The difference between the simulation and PIV results are marginal in cases with a
smaller time step or smaller grid size.
When the LES model is implemented the average velocity and velocity fluctuations of
the liquid phase are much higher than in the case without LES. The effective viscosity in
the case with LES is higher due to the turbulent viscosity. Low viscosities lead to less
dampening of the bubble plume dynamics and this in turn leads to flatter average liquid
phase velocity profiles. The average velocity also increases when implementing bubble
induced turbulence, due to an increase in the effective viscosity. The influence of the sub-
grid scale velocity is negligible.
Reducing the lift coefficient to 0.3 (instead of 0.5, which is the value given in the
literature) gives much higher average velocity and velocity fluctuations than in the case
with CL=0.5. In case of a smaller lift coefficient the spreading of the plume is less and
therefore the dynamics of the plume are reduced, which leads to a higher average velocity
in the centre of the column.
When using LES, the agreement between the simulation and experimental results is better
when using a time step of 0.5.10-3 s, a grid size of 0.01 m in all directions and a lift
coefficient of 0.5. Implementing bubble induced turbulence gives worse results.

The DBM is extended with the coalescence model of Chesters (1991) and Lee et al.
(1987) and the break-up model of Luo and Svendsen (1996) to study the bubble size
distribution. The results are compared to experimental results, measured with a digital
image technique and PIV in a pseudo 2D bubble column with an air-water system.
The break-up model of Luo and Svendsen (1996) and others were developed for
ε > 0.5 m2 s-3. In bubble columns with low gas flows and low turbulence intensities the
energy dissipation is in the order of 10-2 m3 s-1. When these energy dissipation rates are
used in the break-up model, hardly any break-up occurs. In the simulations break-up only
occurs in the top of the column, when the energy dissipation is > 10-1 m3 s-1 and the
diameter of the bubble is large (> 5 mm).
When either of the coalescence models is used, the mean diameter is overpredicted, due
to the fact that hardly any break-up occurs. The number of collisions between two
bubbles that result in coalescence is 43 % with the coalescence model of Chesters and
85 % with the coalescence model of Lee et al. (1987). Most of the coalescence occurs in
the lower part of the column. The results of the coalescence model of Chesters (1991)
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combined with the break-up model of Luo and Svendsen (1996) are closer to the
experimental results.
When changing the superficial gas velocity the coalescence efficiency is still the same,
but the number of collisions and thus of coalescence changes. The higher the superficial
gas velocity, the more collisions occur in the column. Therefore the differences between
the simulated mean diameters and the experiments at higher superficial gas velocity are
higher. The bubble size distribution is wider at higher superficial gas velocity.
Further research is necessary to solve the differences between the experiments and the
simulations.

In Euler-Euler models the different phases are treated as interpenetrating fluids and the
ensemble averaged mass and momentum conservation equations are solved to describe
the time-dependent motion of the phases. For the simulations with the Euler-Euler model
the commercial code CFX 4.4 is used. Three different Euler-Euler models are used to
describe two-phase flows in bubble columns: A gas-liquid model, a gas-gas-liquid model
and a gas-liquid model with the MUSIG model for the gas phase. In all three Euler-Euler
models a LES-turbulence model is incorporated. The MUSIG model, including
population balances with a break-up and coalescence model, is used to study the bubble
size distribution in the column. To study the effect of the different rise velocities of the
bubbles a three-phase gas-gas-liquid system is simulated. The gas phase is divided into
two groups, one with a diameter of 2 mm and one with a diameter of 6 mm. The drag
relation used for both groups is different. The results of all three models are compared
with experimental PIV results measured by Deen (2001) in a square bubble column filled
with distilled water.
Good agreement was reached comparing the simulation results of the gas-liquid model to
the experimental results. When using a smaller grid size the liquid velocity and velocity
fluctuations are lower, but the differences between the velocity profiles of the case with
smaller grid sizes and the standard case are marginal. In the case with a smaller time step
the average velocity profile is lower than in de standard case. The velocity fluctuations in
the vertical direction are lower, but the difference between the fluctuations in the
horizontal direction between the case with smaller time step and the standard case is
negligible.
When the LES model is implemented the liquid velocity and velocity fluctuations are
much higher than in the case without LES, as could also be seen in DBM. The effective
viscosity in case of LES is higher due to the turbulence viscosity.
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In the gas-liquid model with MUSIG model the bubbles in the gas phase are divided into
10 equally sized bubble size groups from 0.0 - 10.0 mm. The default break-up model
used was the model of Luo and Svendsen (1996), the default coalescence model the
model of Prince and Blanch (1990). The difference between the models with and without
MUSIG model is small because all size groups have the same rise velocity and thus the
same drag relation.
The curve of the average liquid velocities of the gas-gas-liquid model is smaller than for
the gas-liquid model. This is the effect of the smaller bubbles with a different drag
relation. In this case the average velocity is lower with a high maximum in the middle
part of the column. The movement of the bubble plume is very small, as can be
concluded from the velocity fluctuations.
Simulation results of two different coalescence models, of Prince and Blanch (1990) and
Chesters (1991), are compared with simulation results of the DBM with the coalescence
model of Chesters (1991) in a square column. In all models the break-up model of Luo
and Svendsen (1996) is incorporated. The bubbles in the DBM are the smallest and the
bubble size distribution is the narrowest. The bubbles in the model of Prince and
Blanch (1990) are the largest and the bubble size distribution is the widest. As said
previously the results of the DBM with the coalescence model of Chesters (1991) and the
break-up model of Luo and Svendsen (1996) shows the best agreement with experimental
results. The results of the Euler-Euler model with the models of Chesters (1991) and Luo
and Svendsen (1996) are the best in agreement with the results of the DBM. The bubbles
in the Euler-Euler model with the models of Prince and Blanch (1990) and Luo and
Svendsen (1996) are too large.

An imaging technique is used to validate the CFD models experimentally. In this imaging
technique the bubble size distribution and the mean diameter of the bubbles are measured
with a digital high-speed camera in a lab-scale bubble column. This work shows that the
imaging technique gives valuable information about the bubble size distribution and
mean diameter at different flow rates and different heights in the column.
In distilled water the mean diameter increases with increasing height in the column
because of coalescence of the bubbles. The higher their positions in the column, the
longer bubbles generally have resided in the column and the more opportunity they have
had to coalesce.
The mean diameter increases with increasing flow rate. The higher the flow rate, the
higher the gas fraction. Therefore more collisions between the bubbles occur, the chance
for coalescence is higher and the diameter of the bubbles becomes larger.
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In distilled water with a very small amount of octanol (2.4.10-4 M) to inhibit coalescence
the mean diameter shows a little increase with increasing height in the column due to the
decrease in hydrostatic pressure.
The mean diameter decreases with increasing flow rate. When the flow rate is higher,
more bubbles are present in the column and more turbulence is generated. The number of
collisions between bubbles and eddies is larger and the chance for breaking of bubbles is
larger.
The bubble size distribution moves a little to larger diameters when increasing the height
and moves to smaller diameters when increasing the flow rate.

6.2 Recommendations

6.2.1 Interface tracking models

The volume of fluid model and the front tracking model can be used very well to derive
equations for the forces acting on bubbles rising in a liquid. The volume of fluid model is
improved by using the tensile force model instead of the continuum surface force model
to calculate the surface tension. A second improvement is the use of a smoothened colour
function for the calculations of the liquid fraction.
A disadvantage of the front tracking model is that the volume of the bubble is not
intrinsically conserved. The bubble volume slowly changes in time, due to the method
used to move the interface and the re-meshing of the interface mesh. Therefore the next
step in the front tracking model is to improve the conservation of volume by e.g.
changing the remeshing of the interface.

In the simulations in this thesis the bubble is placed at some point in the column as a
sphere. When starting the simulation the bubble starts to rise and to deform. To reach a
better approach to real bubble columns and to do further research on the time-dependent
behaviour of bubbles the simulated bubble should enter the column through a nozzle. In
that case the shape of the bubble is better described.

In this thesis closure relations for the drag, lift and virtual mass force of a bubble rising in
a liquid are derived. The drag and virtual mass force are studied for small and large
bubbles in a 2D and 3D model. Further research on the lift force for small bubbles
(< 8 mm) and the lift force of bubbles in 3D models is necessary.
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Another subject to study is the influence of bubbles on the behaviour of other bubbles. By
doing simulations with detailed models such as VOF and front tracking, the influence of
neighbouring bubbles on the shape and dynamics of the rising bubble can be studied.
These closure relations can be used in Euler-Lagrange and Euler-Euler models, which
often ignore the presence of surrounding bubbles.

The bubble behaviour can be influenced by coalescence with neighbouring bubbles or
break-up of the bubble. When the VOF model will be used to study coalescence and
break-up a more detailed description of the interface dynamics is necessary. In VOF
coalescence and break-up now occurs as a result of the interface reconstruction. When the
interfaces of two bubbles are in one cell, the bubbles immediately coalesce. A first step to
use VOF to study coalescence and break-up is to develop an algorithm that allows for
more than one interface in a cell, which will be a difficult task. Another step to a probable
solution for solving the problem of two interfaces in one cell is to use a very fine local
grid at the interface. In this way the film between two bubbles and the neck of a breaking
bubble can probably be solved in the simulations.
In the front tracking model it is already possible to have more than one interface in a cell.
The problem in this model is the restructuring of the interface meshes when coalescence
or break-up occurs.

6.2.2 Discrete bubble model

The relations for the drag, lift and virtual mass forces derived with the VOF model and
the front tracking model can be implemented in the DBM. Different relations can be used
for different diameters and shapes of the bubbles. When using time-dependent relations
of the drag and lift coefficient, the oscillating behaviour of the bubbles can be described.
The DBM can be used very well to investigate which break-up and coalescence model
gives the best results compared to experimental results, because in this model all bubbles
can be tracked individually. In this thesis the break-up model of Luo and Svendsen
(1996) was implemented. An important parameter in this break-up model and also in
other models in the literature is the energy dissipation. The models in literature are based
on fact that the energy input, given by the turbulent kinetic energy of an eddy, should be
large enough to provide the increase of the bubble surface energy. In the bubble column
with small gas flow rates used in this thesis the energy dissipation is low. Due to this low
energy dissipation in the simulations hardly any break-up occurs. In the experimental
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results could be seen, that break-up occurs, even at low gas flows. Probably also another
mechanism causes break-up in bubble column. If this is the case, the model of Luo and
Svendsen (1996) and others cannot be used to study break-up of bubbles at low gas
flows. Possibly a new break-up model should be developed, in which not only the
turbulent kinetic energy is included, but also other parameters. One can think of the time
duration of the interaction and the stability of the bubble.
In the snap shots of the bubble plumes in the pseudo 2D model could be seen, that the
bubbles are rising in a line behind each other and the bubble plume is not oscillating at
small gas flows. This can be the effect of the large grid size. Probably the time between
the bubbles coming into the column through the nozzle also influences the bubble plume
behaviour.

DBM with coalescence and break-up model can be used to investigate the complex
behaviour involving hydrodynamics, mass transfer and chemical reactions in a gas-liquid
bubble column reactor. With this extension the model can be used to simulate bubble
columns used as chemical reactors.

6.2.3 Two-fluid model

The bubble size distribution is also relevant in the context of the Euler-Euler model. The
break-up and coalescence models studied in DBM can also be incorporated in the two-
fluid model and validated with experimental results. Although experimental results
obtained in a pseudo 2D column were available, it was not possible to compare these with
CFX simulations, since CFX failed to converge for this particular problem. Further
research on the bubble size distribution and break-up and coalescence of bubbles in the
Euler-Euler model is necessary. When it is possible to measure the bubble size
distribution in a 3D column experimentally, these results can be compared to simulation
results of the Euler-Euler model.

The relations for the drag, lift and virtual mass forces derived with the VOF model and
the front tracking model can be implemented in the two-fluid model. Different relations
can be used for different diameters and shapes of the bubbles.
An important point using different drag relations is the influence of the different rise
velocity of bubbles with different diameters. This difference is only important in the case
both very small and large bubbles are present. When all bubbles are in the range of 4-10
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mm, the rise velocity is approximately constant. A combination of the gas-gas-liquid
model, used in this thesis, with the MUSIG model can be investigated. In both gas phases
the MUSIG model can be incorporated. The gas-gas-liquid model can be used for the
difference in rise velocity and the MUSIG model for the population balances.

The two-fluid model with coalescence and break-up model can be used to investigate the
complex behaviour involving hydrodynamics, mass transfer and chemical reactions in a
gas-liquid bubble column reactor. With this extension the model can be used to simulate
bubble columns used as chemical reactors.
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Nomenclature

A surface [m2]
Ah Hamacker constant [J]
Apixel pixel area [m2]
BBU birth rate break-up [m-3 s-1]
BC birth rate coalescence [m-3 s-1]
C constant [-]
CD drag coefficient [-]
Ck number density of particle [-]
CL lift coefficient [-]
CS constant sub-grid scale model [-]
CVM virtual mass coefficient [-]
Cµ,BIT constant bubble induced turbulence model [-]
cf increase coefficient of surface area [-]
D column depth [m]
DBU death rate break-up [m-3 s-1]
DC death rate coalescence [m-3 s-1]
Dc column diameter or hydraulic diameter [m]
d diameter bubble [m]
d10 number mean diameter [m]
d30 volume mean diameter [m]
d32 Sauter mean diameter [m]
dA bubble diameter based on pixel area [m]
dab equivalent bubble diameter [m]
de volume equivalent sphere diameter for drop or bubble [m]
dH Heywood diameter [m]
dP bubble diameter based on pixel perimeter [m]
E energy spectrum [m3 s-2]
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e energy of individual eddies [J]
e mean energy of individual eddies [J]

ie increase of surface energy due to a bubble breakage [J]

F liquid volume fraction [-]
F1-2 force exterted on interface between point 1 and 2 [N]
FBuoyancy buoyancy force [N]
FD drag force [N]
FG gravitational force [N]
FIF total interfacial force [N]
FL lift force [N]
FP pressure force [N]
FSF volumetric surface tension force [N]

SFF smoothed surface tension force [N]

Ftot total force [N]
FVM virtual mass force [N]
fB calibration factor for break-up [-]
fC calibration factor for coalescence [-]
fBV breakage volume fraction [-]
fq fraction of the dispersed phase volume fraction in the qth group [-]
g gravitational constant [m s-2]
g total breakage rate [s-1]
H dimensionless group [-]
h grid spacing [m]
hf final film thickness [m]
hi initial film thickness [m]
I unity vector [-]
J dimensionless group [-]
k wave number [-]
ksgs sub-grid scale kinetic energy [m2 s2]
L length [m]
l⊥ length perpendicular to the x,y-surface [m]
M surface immobility parameter [-]
m mass [kg]
NB number of bubbles [-]
Npixels number of pixels [-]
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NS source density [-]
Nt number of time steps [-]
NX number of cells in x-direction [-]
NY number of cells in y-direction [-]
n number of grid cells [-]
n normal of gas-liquid interface [-]
nB number of bubbles per unit dispersed volume [m-3]

e
nλ& number of eddies per unit reactor volume [m-4]

n% unit normal of gas-liquid interface [-]
P pressure [N m-2]
PBU break-up probability [-]
Ppixel pixel perimeter [m]
pe kinetic energy distribution [-]
Q coalescence frequency [m3 s-1]
r radius [m]
r position of bubble [m]
rd radius of the liquid film disc [m]
rab equivalent bubble radius [m]
rnd random number [-]
S characteristic filtered rate of strain [s-1]
∆s surface area [m2]
T tensile force [N]
t time [s]
t tangential unit vector
tab time step to solve collision between bubbles [s]
tc coalescence time [s]
tflow time step to solve flow field [s]
tbub time step to solve forces acting on bubbles [s]
td drainage time [s]
tr rupture time [s]
u velocity [m s-1]
u liquid velocity [m s-1]
ugs liquid velocity grid scale [m s-1]
uI velocity in interrogation area [m s-1]
usgs liquid velocity sub-grid scale [m s-1]
ut turbulent velocity [m s-1]
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eλu turbulent velocity of eddy [m s-1]

u time-averaged mean velocity [m s-1]
u ' velocity fluctuations [m s-1]
V volume [m-3]
v gas velocity/ bubble velocity [m s-1]
vB bubble velocity [m s-1]
vsg superficial gas velocity [m s-1]
W column width [m]
x position [m]
x x-direction [-]
xB bubble position in x-direction [m]
x centre of distribution function [m]
xi boundary of integration step in i-direction [m]
xj boundary of integration step in j-direction [m]
xrandom random number [-]
y y-direction [-]
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Greek symbols

α volume fraction [-]
αc universal constant [-]
αlow minimum volume fraction of the liquid [-]

β% constant [-]

χ dimensionless energy [-]
χc dimensionless energy [-]
∆x grid spacing in horizontal direction [m]
∆y grid spacing in lateral direction [m]
∆z grid spacing in vertical direction [m]
ε energy dissipation [m2 s-3]
Φ interface momentum transfer / total interfacial force [N m-3]
γ shear rate [s-1]
Γ gamma function [-]
κ surface curvature [m-1]
λ coalescence efficiency [-]
λe eddy size [m]
λms eddy size of viscous dissipation [m]
µ viscosity [kg m-1 s-1]
µBIT bubble induced turbulence viscosity [kg m-1 s-1]
µL molecular viscosity [kg m-1 s-1]
µT turbulent viscosity [kg m-1 s-1]
µeff effective viscosity [kg m-1 s-1]
µw viscosity of water [kg m-1 s-1]
θ collision rate [m-3 s-1]
θT collision rate due to turbulence[m-3 s-1]
ρ density [kg m-3]
σ surface tension [N m-1]
τ stress tensor [kg m-1 s-2]
τc contact time [s]
ξ size ratio between eddy and bubble [-]
ζi

cell volume fraction of ith  bubble in cell [-]
ΩB breakage rate [m-3 s-1]

eλω& collision frequency between eddy and bubble [m-4 s-1]
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Subscripts

1 image 1
2 image 2
2D two-dimensional
3D three-dimensional
a bubble a
ab colliding bubble pair
aftercollision after collision
B bubble
b bubble b
cell cell
g gas
f phase f
h time step
i cell i in x-direction
i bubbles in group i
in inlet
j bubbles in group j
j cell j in y-direction
k bubbles in group k
k bubble number in sample
l liquid
l edge
m marker
masscentre centre of mass
min minimum
p projected
q bubble number in cell
rel relative
s superficial
slip slip velocity
x x-direction
y y-direction
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Dimensionless numbers

Eo Eötvös number
M Morton number
Re Reynolds number
We Weber number
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Dankwoord

En dan ben ik nu aangekomen bij bijna het laatste, maar zeker niet het minst belangrijke
onderdeel van dit proefschrift: Het Dankwoord. Ik denk dat deze bladzijden de meest
gelezen zullen zijn van dit proefschrift en daarom zal ik ook bij deze laatste pagina’s nog
even mijn uiterste best doen.
Ik wil alle mensen, die een bijdrage hebben geleverd aan de totstandkoming van dit werk,
heel hartelijk bedanken. En daarbij hoop ik niemand te vergeten.

Als eerste wil ik mijn promotor, Hans Kuipers, bedanken voor de mogelijkheid een
promotieproject in zijn groep uit te voeren. Door deze mogelijkheid is mijn belangstelling
voor onderzoek aangewakkerd en ik ben nog steeds blij dat ik de keuze heb gemaakt om
te gaan promoveren. De kennis van Hans op CFD-gebied heeft een grote bijdrage
geleverd aan het slagen van dit project. Ook wil ik mijn assistent-promotor Niels Deen
bedanken voor zijn inbreng en begeleiding tijdens de laatste twee jaren van mijn
promotie. Ik heb veel geleerd van zijn kennis op het gebied van gas-vloeistofstroming en
zijn kritische blik op de resultaten is dit proefschrift zeer ten goede gekomen. Niels, ik
heb het altijd leuk gevonden met je samen te werken. Daarnaast wil ik Martin van Sint
Annaland bedanken voor zijn inzet en begeleiding tijdens de eerste twee jaren van mijn
promotie. Zijn nieuwe ideeën bij het oplossen van problemen zijn van groot belang
geweest voor het vervolg van het project.

Ik wil Akzo Nobel bedanken voor de financiële ondersteuning van dit promotie-
onderzoek. Mijn dank gaat daarbij uit naar Erik Delnoij, voor zijn interesse en kritische
blik tijdens de eerste twee jaren van mijn promotie en naar Mathijs Goldschmidt, voor
zijn bijdrage en ondersteuning tijdens de laatste twee jaren.

Twee afstudeerders hebben een belangrijke bijdrage geleverd aan onderwerpen in dit
proefschrift. Rutger Lempens heeft in het VOF model gekeken naar de krachten, die op
bellen werken. Vanwege een groot aantal numerieke problemen was dit een zeer lastige
opgave. Het is niet makkelijk om twee maanden lang te staren naar een belletje dat niet
wil opstijgen. Rutger, bedankt voor je inzet. Hans Noorlag wil ik bedanken voor zijn
grote bijdrage aan de resultaten van het DBM. Hij heeft met zijn kritische blik een groot
deel van de problemen met de botsingen van bellen in dit model opgelost. Hans, ik hoop
dat je niet al te veel nachtmerries hebt gehad van het tellen van bellen en hun botsingen.
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Verder wil ik Wouter Tromp bedanken voor zijn bedrage aan de PIV metingen tijdens
zijn opdracht voor Practicum Proceskunde. Er zijn mooie resultaten uitgekomen, die ik
helaas niet in dit proefschrift kon verwerken.

Vervolgens wil ik al mijn collega’s bij FAP en OOIP bedanken, die mij op vele manieren
hebben geholpen bj mijn project. Michiel, bedankt voor je vele hulp bij het werken met
Unix en het verbeteren van het VOF model en het DBM. Door je kennis over gas-
vloeistofsystemen was het goed om met jou hierover te discussiëren. Ik vond het prettig
om samen met jou als ‘bellen-mens’ te werken tussen alle ‘ballen-mensen’. Dadan, also
your support as new ‘bubble-person’ in the group during the last year of my promotion
was very welcome. Thanks to your help with the DBM the last problems were solved. It
was very pleasant to work with you and good luck with your research. Verder wil ik
Albert en Jeroen heel erg bedanken voor al hun hulp en steun bij alle grote en kleine,
belangrijke en minder belangrijke vragen. Ik ben blij dat ik altijd jullie kantoor binnen
kon lopen voor al mijn vragen. Of het nu ging over Unix, Windows, bellen of ballen,
jullie probeerden mij altijd te helpen. I would like to thank Dhaneshwar (Dani) for his
support with CFX. It was very pleasant to have you as a roommate during the four years
of this project. Daarnaast wil ik Toine bedanken voor alle hulp en discussies over gas-
vloeistofsystemen. Toine, ook jouw kantoor kon ik altijd binnenlopen voor allerlei
vragen. Jammer dat we de ultrasone techniek niet verder konden gebruiken in de
bellenkolom. Duco wil ik bedanken voor zijn korte samenwerking bij het testen van de
ultrasone techniek in de platte kolom. Duco, het was erg gezellig om met jou samen te
werken.

De experimentele resultaten waren nooit tot stand gekomen zonder het bekwame werk
van de technici, Gerrit Schorfhaar, Wim Leppink, Benno Knaken en Henk-Jan Moed.
Gerrit, ik wil je heel hartelijk bedanken voor de mooie bellenkolom die je hebt gemaakt.
Het was erg plezierig om daarbij met jou samen te werken. Wim, jouw ideeën hebben
mijn geholpen om de puntjes op de i te zetten. Benno wil bedanken voor zijn hulp bij de
ultrasone techniek en voor het lijmen van de kolom. Henk-Jan bedank ik voor alle kleine
tussendoortjes. En Robert Meijer wil ik bedanken voor zijn electo-technische en
computerondersteuning. Dankzij jullie hulp zijn mijn opstelling en ik tv-beroemdheden
geworden.
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Ook wil ik de secretaresses hartelijk danken: Brigitte Sanderink, Ria Hofs-Winkelman en
Nicole Haitjema. Zij hebben op de achtergrond veel ondersteuning gegeven en hadden
ook altijd tijd voor een informeel en belangstellend praatje.
Martin van Sint Annland verzorgde de afhandeling van de financiën. Bedankt.

Ik heb een bijzonder goede tijd gehad bij de Vlugtheuvel. Ik heb vele goede
herinneringen aan alle borrels, het vakgroepvolleybal, het zeilen, skiën, wadlopen, karten,
bowlen en andere activiteiten. Hiervoor wil ik alle collega’s, studenten, Twaio’s en
andere medewerkers die de afgelopen vier jaar bij de Vlugtheuvel hebben rondgelopen
heel hartelijk bedanken. Zonder jullie aanwezigheid was mijn promotietijd toch een stuk
minder leuk en enerverend geweest.

Verder wil ik hierbij ook mijn paranimfen Petra en Ylva bedanken. Ik vind het als
promovenda erg leuk om twee vrouwelijke paranimfen te hebben. Petra, heel erg bedankt
voor de steun en belangstelling de afgelopen jaren. Ik kon altijd mijn verhaal bij jou
kwijt, via mail of telefoon.
Ylva, ook jij heel erg bedankt voor alle steun en belangstelling, ook al begreep je er
misschien soms niet veel van. Hoewel de afstand groot was (Maastricht-Enschede of
Zweden-Enschede), leek de afstand veel kleiner door contact via computer en telefoon.

En dan een speciaal woord van dank voor mijn ouders. Ook al konden jullie je volgens
mij geen voorstelling maken waar ik nu precies mee bezig was, ik heb altijd heel veel
steun aan jullie gehad. Ik kon altijd mijn verhaal bij jullie kwijt en jullie belangstelling
was geweldig. Ik ben erg blij dat jullie mij vier jaar geleden hebben geholpen bij de
keuze om te gaan promoveren, want dit is een goede keuze geweest.

En als laatste wil ik Sven bedanken. Door jouw aanwezigheid tijdens de laatste periode
van mijn promotie en in de periode daarna ben je een hele grote steun. Sven, jij hebt altijd
een luisterend oor en een goed advies, waar ik op kan bouwen en op terug kan vallen.
Uiteraard wil ik je ook nog even extra bedanken voor het maken van de omslag van het
proefschrift. En we gaan vast en zeker een erg goede toekomst tegemoet met z’n tweeën.

Allemaal ontzettend bedankt!
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Levensloop

Esther van den Hengel werd geboren op 26 mei 1976 in Langeveen, waar zij ook de
lagere school bezocht. Van 1989 tot 1994 bezocht zij het Pius X College te Almelo, waar
zij in 1994 haar VWO diploma behaalde.

In september 1994 begon zij met de studie Chemische Technologie aan de Universiteit
Twente in Enschede. In het kader van deze opleiding liep zij van augustus tot
november 1998 stage bij Schering AG in Berlijn, Duitsland. In augustus 1999 studeerde
zij af bij de vakgroep Ontwikkeling en Ontwerp van Industriële Processen (OOIP) op het
onderwerp “Oxidatieve dehydrogenering van propaan”.

In oktober 1999 trad zij in dienst bij de werkeenheid Fundamentele Aspecten van de
Proceskunde (FAP) om als promovendus (AIO) een promotieonderzoek te verrichten op
het gebied van gas-vloeistof twee-fasenstroming. De resultaten van dit onderzoek vormen
de basis voor dit proefschrift.

In januari 2004 trad zij in dienst bij TNO Prins Mauritslaboratorium in Rijswijk.


